
Sympatholytic & adrenergic blockers OL-receptor Antagonists

Prof. Hanan HagarPharmacology Unit
College of Medicine

Classification of sympatholytics

- > Adrenergic neuron blockers
 - Formation of False Transmitters
 e.g. α-Methyl dopa
 - Depletion of Storage sitese.g. reserpine
 - Inhibition of release & enhance uptakee.g. guanethidine
 - Stimulation of presynaptic α_2 receptors e.g. clonidine and α -methyl dopa
- > Adrenergic receptor blockers

1. Adrenergic Neuron Blockers [SYMPATHOLYTICS] 1. METHYLDOPA α-methyl tyrosine Norepinephrine (NE) Na Tyrosine **→ False Transmitters Dopa**←Tyrosine **Antihypertensive in** degraded monoamines 2. RESERPINE **PREGNANCY** MAO **→Depletes Stores** α_2 mitochondria NE 4. Clonidine Gaunthidine Presynaptic α_2 agonist → Enhance Uptake synaptic cleft noradrenaline receptor 2. Adrenoceptor Blockers [ADRENOLYTICS]

α-Methyl dopa

- Forms false transmitter that is released instead of NE.
- Is a centrally acting α_2 adrenergic agonist that inhibits NE release.

Drug of choice in:

Treatment of hypertension in pregnancy (pre-eclampsia - gestational hypertension).

Clonidine

- Acts as α-2 receptor agonist to inhibit NE release.
- Suppresses sympathetic outflow activity from the brain.
- Little used as antihypertensive agent due to rebound hypertension upon abrupt withdrawal.

Uses: the management of withdrawal symptoms of opiate treatment, alcohol withdrawal, benzodiazepines and nicotine dependence.

Apraclonidine

is used in open angle glaucoma as eye drops. acts by decreasing aqueous humor formation.

Adrenergic receptor blockers

Adrenergic receptor blockers or adrenolytics They block sympathetic actions by antagonizing α or B-receptors.

Types

- α-receptor antagonists
- B-receptor antagonists

Classification of \alpha-receptor Antagonists

Non-selective antagonists

e.g. phenoxybenzamine & phentolamine.

α_1 -selective antagonists

e.g. prazosin, doxazosin, tamsulosin, terazosin.

Selective α_2 - adrenoceptor antagonists

e.g. yohimbine

Non-Selective & - Adrenoceptor Antagonists

Phentolamine

Reversible blocking of a1 & a2 receptors.

Short acting (4 hrs).

Phenoxybenzamine

Irreversible block of both α₁ and α₂ receptors

Long-acting (24 hrs).

Both drugs cause:

- 1) Vasodilatation of blood vessels (α_1 block).
- 2) Decrease peripheral vascular resistance
- 3) Postural hypotension.
- Increase cardiac output (α_2 block).
- 5) Reflex tachycardia.
- 6) Increase in GIT motility and secretions

Reflex tachycardia occurs by two mechanisms:

- Stimulation of baroreceptor reflex that increase NE release.
- α2 blockade in heart that abolishes pre-synaptic negative feedback for NE release.

Therapeutic Uses:

□ Pheochromocytoma: Before surgical removal to protect against hypertensive crisis.

Adverse Effects of non-Selective \alpha - Adrenoceptor Antagonists:

- Postural hypotension and syncope.
- Tachycardia
- Headache
- Nasal stuffiness or congestion
- Vertigo & drowsiness
- Male sexual dysfunction (inhibits ejaculation).

Non-Selective α -Adrenoceptor Antagonists

Both drugs can precipitate arrhythmias and angina and are contra-indicated in: patients with decreased coronary perfusion.

Selective α_1 - adrenoceptor Antagonists

Drugs as

Prazosin, doxazosin, terazosin.

- Prazosin has short half-life.
- Doxazosin, terazosin have long half lives.

Selective α_1 - adrenoceptor Antagonists

α_1 -antagonists cause:

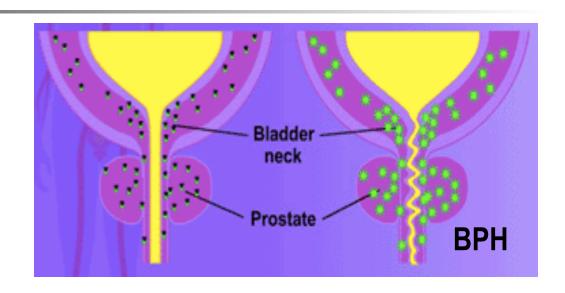
- * Vasodilatation due to relaxation of arterial and venous smooth muscles.
- * Fall in arterial pressure with less tachycardia than with non-selective α-blockers.

Therapeutic Uses:

- Treatment of hypertension
- Urinary retention associated with benign prostatic hyperplasia.
- Reynaud's disease.
- Reynaud's disease causes some areas of your body such as your fingers and toes to feel numb and cold in response to cold temperatures or stress).

Selective α_{1A} —antagonist Tamsulosin

- * a selective α_{1A} —antagonist.
- * α_{1A} receptors present in prostate and bladder neck.
- *** Tamsulosin produce:** relaxation of smooth muscles of bladder neck & prostate →improve urine flow.
- Has minimal effect on blood pressure.


USES:

- Treatment of benign prostatic hypertrophy (BPH).
- Help with the passage of kidney stones.

Tamsulosin

Relaxation of bladder neck and prostate can improve urine flow

Adverse effects of α 1- Antagonists

as before with non selective but to a lesser degree

α_2 -selective antagonists

- e.g. yohimbine
- Used as aphrodisiac in the treatment of erectile dysfunction.
- Increase nitric oxide released in the corpus cavernosum thus producing vasodilator action and contributing to the erectile process.