

C A R D I O V A S C U L A R P H Y S I O L O G Y

CAPILLARY CIRCULATION

DR. ABEER A. AL-MASRI

A. PROFESSOR & CONSULTANT CARDIOVASCULAR PHYSIOLOGIST FACULTY OF MEDICINE, KSU

CLASSIFICATION OF THE VASCULAR SYSTEM

- I. Aorta ... (elastic recoil)
- 2. Arteries ... (muscular, low resistance vessels)
- **3.** Arterioles ... (high resistance vessels)
- 4. Capillaries ... (exchange vessels)
- 5. Venules
- **6.** Veins ... (capacitance vessels)

جـــامـعــة الملك سعود King Saud University

BLOOD VESSEL COMPARISON

DISTRIBUTION OF BLOOD WITHIN THE CIRCULATORY SYSTEM AT REST

CAPILLARIES

Smallest blood vessels.

• One endothelial cell thickness.

Exchange vessels.

- Provide direct access to cells.
- Most permeable.
- Permits exchange of nutrients
 & wastes.

CAPILLARY NETWORK

Fenestrated capillary

Fenestrations

or pores

Basement

membrane

Pinocytic vesicles

TO

The

Boundary

between endothelial

cells

TYPES OF CAPILLARIES

Types are classified by diameter/permeability:

- Continuous

• Do not have fenestrae.

– Fenestrated

• Have pores.

– Sinusoidal

• Large diameter with large fenestrae.

جـــامــعــة الملك سعود King Saud University

Capillary Beds

- Capillary beds consist of two types of vessels:
 - Vascular shunt directly connects an arteriole to a venule.
 - True capillaries exchange vessels.
 - Oxygen & nutrients cross to cells
 - Carbon dioxide & metabolic waste products cross into blood

CROSS-SECTIONAL AREA

- As diameter of vessels decreases, the total crosssectional area increases & velocity of blood flow decreases.
- Much like a stream that flows rapidly through a narrow gorge but flows slowly through a broad plane.

Total Cross Sectional Area

EXCHANGE OF FLUID BETWEEN CAPILLARIES AND TISSUES

CAPILLARY EXCHANGE AND INTERSTITIAL FLUID VOLUME REGULATION

- Blood pressure, capillary permeability & osmosis affect movement of fluid from capillaries.
- A net movement of fluid occurs from blood into tissues.
- Fluid gained by tissues is removed by lymphatic system.

Diffusion at Capillary Beds (Fluid Balance)

Outward Forces:

- **1. Capillary blood pressure** $(P_c = 30-35 \text{ to } 10-15 \text{ mmHg})$
- **2. Interstitial fluid pressure** $(P_{IF} = 0 \text{ mmHg})$
- 3. Interstitial fluid colloidal osmotic pressure (μ_{IF} = 3 mmHg)
- TOTAL = 38 to 18 mmHg

Inward Force:

1. Plasma colloidal osmotic pressure (μ_C = 25- 28 mmHg)

Dr. Abeer Al-Masri, Faculty of Medicine, KSU.

FLUID FILTRATION & REABSORPTION IN NORMAL MICROCIRCULATION

Hydrostatic Pressure= 0 mmHq

Osmotic Pressure= 3 mmHa

At arterial end:

- Water moves **out** of the capillary with a NFP of +5 to +10 mmHg.
- Hydrostatic pressure dominates at the arterial end & net fluid flows out of the circulation.

At venous end:

- Water moves into the capillary with a NFP of -5 to -7 mmHg.
- Oncotic pressure dominates at the venous end & net fluid will flow into the bloodstream. 15

Dr. Abeer Al-Masri, Faculty of Medicine, KSU.

LYMPHATIC SYSTEM

Lymphatic vessels present b/w capillaries.

3 basic functions:

- Drain excess interstitial (tissue) fluid back to the bl, in order to maintain original bl volume.
- Transports absorbed fat from small intestine to the bl.
- Helps provide immunological defenses against pathogens.

A

LYMPHATIC SYSTEM

Interstitial space Lymph capillary Tissue cells

Venule

Lymph duct

Arteriole

Capillar bed

