

Cardiovascular Physiology

Heart Sounds & Murmurs

Dr. Abeer A. Al-Masri

MBBS, MSc, PhD Associate Professor Consultant Cardiovascular Physiologist Faculty of Medicine, KSU

Lecture Outcomes

HEART SOUNDS

• Detected over anterior chest wall by:

Auscultation: ... (Stethoscope)

Phonocardiography: (sound recording device)

HEART SOUNDS' WINDOWS

• Best heard at 4 certain areas:

Pulmonary area:

• 2nd Lt intercostal space

Aortic area:

• 2nd Rt costal cartilage

Mitral area:

- 5nd Lt intercostal space crossing midclavicular line, or
- 9 cm (2.5-3 in) from sternum

Tricuspid area:

lower part of sternum towards Rt side

Heart Sounds:

• '4' heart sounds can be detected:

- 1st & 2nd ht sounds ... (usually audible)
- 3rd & 4th ht sounds ... (sometimes detected)

Normal Heart Sounds S1 S2 ΜT AP LUB DUB Systole Diastole Systole

- Due to closure of the AV- vs.
- It marks beginning of ventricular systole.
- Recorded at the beginning of the 'isometric contraction' phase.
- Long in duration (≈0.15 sec.)
- Of low pitch (LUB) .. (Loud)
- 25-35 Hz.
- Best heard at Mitral & Tricuspid areas.

- Due to closure of semilunar-vs.
- Marks the beginning of ventricular diastole.
- Recorded at the beginning of the 'isometric relaxation' phase.
- Short in duration (≈ 0.11-0.125 sec.)
- Of high pitch (DUB) .. (Soft & Sharp)
- 50 Hz.
- Best heard at Aortic & Pulmonary areas.

- Recorded during the 'rapid filling' phase, due to rush of blood into the ventricle.
- Duration ≈ 0.05 sec.
- S3 is usually not audible .. (very low pitch)
- ? heard in children.
- Best heard at Mitral area.

- Recorded during atrial systo
- Duration ≈ 0.04 sec.
- S4 is usually not audible .. (very low pitch)
- ? heard in elderly.
- Best heard at Mitral area.

Significance of heart sounds?

Important for diagnosis of heart murmurs.

Abnormal extra heart sounds heard during the heart beat cycle.

Produced by turbulence (abnormal patterns) of blood flow through the heart & its valves.

Murmurs are longer than heart sounds.

What Makes Noises in the Heart?

Valves closing:

- Atrio-ventricular = (S1)
- Semilunar = (S2)

Increased intra-cardiac hemodynamics (Murmurs):

- Blood striking the left ventricle = (S3, S4)
- □ Increased flow across <u>normal</u> valves.
- Turbulent flow through an <u>abnormal</u> valve.
- Turbulent flow through septal defect.

Physiological vs. Pathological Heart Murmurs

1. Physiological Murmurs:

2. Pathological Murmurs:

f blood flow across normal valves:

e.g.

- Pregnancy
- Hyperthyroidism
- Anemia
- Fever
- Children

- Turbulent flow through abnormal valves, or septal defect..
 - ? Congenital

e.g.

- Tight valve (stenosis)
- Leaky valve (regurgitation or insufficiency)

How to Describe Heart Murmurs?

- **Timing (systolic or diastolic)**
- Shape
- Location
- Radiation
- Intensity
- Pitch
- Quality

1. Timing:

Murmurs are described according to their position in the cardiac cycle:

- Systolic.
- Diastolic.
- Continuous.

2. Shape:

- Crescendo (grows louder.)
- Decrescendo.
- Crescendo-decrescendo (Diamond-shaped.)
- Plateau.

Dr. Abeer A. Al-Masri, Faculty of Medicine, KSU

Describing a heart murmur ... (Cont.)

3. Location of maximum intensity

Determined by the site where the murmur originates; e.g. Aortic, Pulmonary, Tricuspid, & Mitral listening areas.

4. Radiation

Reflects intensity of the murmur & direction of blood flow.

5. Intensity:

Dr. Abeer A. A

Graded on a (6) point according to <u>Levine scale</u>:

Classification of murmurs by loudness

 Lowest intensity Very faint 	 • Low intensity • Quiet but heard immediately 	 Medium intensity Moderately loud 	• Medium intensity • Loud • Thrills	 Loud intensity Heard with stethoscope partly off the chest 	 Loudest intensity No stethoscop needed Thrills 	pe
Crade 1	Cure de D	Crada 2	Cue de 1	Crada E	Grada 6	

Heart murmurs Intensity

I / VI	need quiet room and trained ear to hear.		
	(difficult to hear even by expert listeners)		
II / VI	audible to anyone who listens attentively		
	(usually audible by all listeners)		
III / VI	loud, but not palpable		
	(easy to hear even by inexperienced listeners, but without a palpable thrill)		
IV / VI	loud and palpable: it produces a precordial thrill		
V / VI	audible with your stethoscope placed perpendicular to chest wall		
VI / VI	audible without a stethoscope		

Describing a heart murmur ... (Cont.)

6. Pitch

High, medium, low.

7. Quality

Blowing, harsh, rumbling & musical.

8. Others:

i. Variation with respiration:

Right sided murmurs change > left sided.

- ii. Variation with position of patient.
- iii. Variation with special maneuvers:

Valsalva \Rightarrow Murmurs \downarrow in length & intensity.

Systolic Murmurs

Early systolic Mid Systolic (ejection) Late systolic Pansystolic (holosystolic)

SYSTOLIC MURMURS

- Derived from harsh & ↑ turbulence in flow.
- Associated with:
 - 1. ↑ flow across normal valve.
 - 2. ↑ flow into a dilated great vessel.
 - flow across an abnormal valve, or narrowed ventricular outflow tract - e.g. aortic /pulmonary stenosis.
 - flow across an incompetent AV valve e.g. mitral/tricuspid regurgitation.
 - 5. ↑ flow across the inter-ventricular septum e.g. VSD.

IN SUMMARY: COMMON SYSTOLIC MURMURS AND TIMING

- 1. Aortic stenosis ejection murmur.
- 2. Pulmonary stenosis ejection murmur + spilling S2.
- 3. Mitral / Tricuspid regurgitation holosystolic.
- 4. Mitral valve prolapse mid-late systole.
- 5. Ventricular septal defect (VSD) holosystolic.

S1

EJECTION (MID-SYSTOLIC) MURMURS

- Most common kind of heart murmur.
- Usually crescendo-decrescendo.

They ?may be:

1. Innocent

Common in children & young adults.

2. Physiological

Can be detected in hyper-dynamic states, e.g. anemia, pregnancy, fever & hyperthyroidism.

3. Pathological

Secondary to structural CV abnormalities, e.g. Aortic/pulmonary stenosis, Hypertrophic cardiomyopathy & mitral prolapse.

PAN-SYSTOLIC (HOLOSYSTOLIC) MURMURS

- Pathological murmur.
- Begins immediately with S1 & continues up to S2.
- Heard with:
 - Mitral/tricuspid regurgitation.
 - Ventricular septal defect (VSD).

Aortic Stenosis

Narrowing of aortic outflow tract causing obstruction of flow from LV into ascending aorta

- **T-** mid-systolic (ejection) murmur.
- L- best heard @ aortic area, radiates along carotid arteries.

- C- harsh, loud, may have associated thrill, "ejection click."
- A- older age, bicuspid aortic valve, rheumatic fever.

Note: T- Timing; L- Location; C- Character; A- Association

Mitral Prolapse

Bulging of one or both mitral valve leaflets into LA during LV systole

- T- mid- late systolic murmur.
- L- best heard @ apex.
- C- mid systolic click.

A-~5% normal population, asymptomatic, ? sudden death.

Note: T- Timing; L- Location; C- Character; A- Association

Mitral Regurgitation

Retrograde flow from LV into LA through an incompetent mitral valve

- T- holosystolic murmur.
- L- best heard @ apex, radiates to left axilla.
- C- soft, high-pitched, blowing.
- A- MV prolapse, MV myxomatous degeneration, MI, rheumatic heart disease, cardiomyopathy, endocarditis.

Note: T- Timing; L- Location; C- Character; A- Association

S1

S2

Diastolic Murmurs

Early diastolic Mid diastolic Late diastolic

Dr. Abeer A. Al-Masri, Faculty of Medicine, KSU

DIASTOLIC MURMURS

- Almost always indicate heart disease.
- Two basic types:

1. Early decrescendo diastolic murmurs:

Signify regurgitant flow through an incompetent semilunar valve, e.g. aortic/pulmonary regurgitation.

2. Rumbling diastolic murmurs in mid- or late diastole:

Suggest stenosis of an AV valve, e.g. mitral/tricuspid stenosis.

IN SUMMARY: COMMON DIASTOLIC MURMURS AND TIMING

Soft, blowing, gurgle

- 1. Aortic regurgitation early diastole
- 2. Mitral stenosis mid to late (pre-systolic) diastole

امـعـــة

Aortic Regurgitation

Retrograde flow from aorta into LV through incompetent aortic cusps

- T- diastolic (early) murmur.
- L- best heard @2nd-4th left intercostal spaces.
- C- high-pitched, blowing, decrescendo.
- A- aortic root degeneration, rheumatic heart disease, VSD w/aortic valve prolapse (kids.)

Note: T- Timing; L- Location; C- Character; A- Association

Mitral Stenosis

Obstruction of flow from LA to LV because of a narrowed mitral orifice (Valve becomes thickened & calcified)

- T- diastolic (mid-diastolic, or pre-systolic) murmur with 'opening snap' after closure of aortic valve.

S1

- L- best heard @ apex.
- C- low pitched (heard with bell.)
- A- rheumatic fever.

Note: T- Timing; L- Location; C- Character; A- Association

Mitral Stenosis ... (Cont.)

Continuous Murmurs

Dr. Abeer A. Al-Masri, Faculty of Medicine, KSU

Continuous Murmurs

- Begin in systole, ? peak near S2 & continue into all or part of diastole.
- □ Heard with:
 - Patent ductus arteriosus (PDA)
 - Ventricular septal defect (VSD)

IN SUMMARY: COMMON CONTINUOUS MURMURS AND TIMING

- 1. Patent ductus arteriosus (PDA)
- 2. ? Ventricular septal defect (VSD)

Patent Ductus Arteriosus

Failure of closure of the duct between pulmonary artery & aorta

- **T** continuous murmur.
- L- best heard @ upper left sternal border.
- C- machine-like.
- A- left to right shunt, cyanosis.

Note: T- Timing; L- Location; C- Character; A- Association

S1

S1

S2

