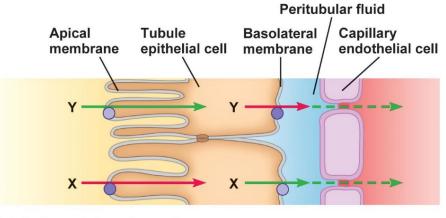

Renal Transport Process

Prof. Mona Soliman, MBBS, MSc, PhD Head, Medical Education Department Professor of Physiology and Medical Education College of Medicine King Saud University



Learning Objectives:

- Define tubular reabsorption, tubular secretion, transcellular and paracellular transport.
- Identify and describe mechanisms of tubular transport
- Describe tubular reabsorption of sodium and water
- Identify and describe mechanism involved in Glucose reabsorption
- Identify the tubular reabsorption mechanisms of amino acids, HCO3-, and Urea

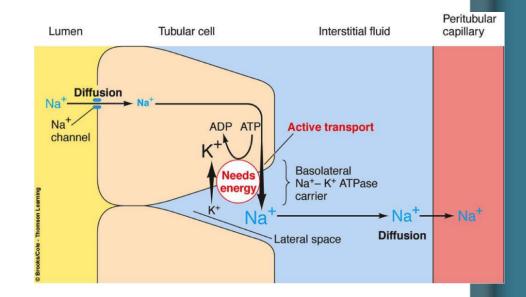
Tubular Reabsorption

- Transported substances move through three membranes
 - Luminal and basolateral membranes of tubule cells
 - Endothelium of peritubular capillaries
- Ca²⁺, Mg²⁺, K⁺, and some Na⁺ can be reabsorbed via paracellular pathways.

(a) Active solute reabsorption

© 2011 Pearson Education, Inc.

Tubular Reabsorption


All organic nutrients are reabsorbed

Water and ion reabsorption is **hormonally** controlled

Reabsorption may be an **active** (requiring ATP) or **passive** process

Sodium Reabsorption: Primary Active Transport

- Sodium reabsorption is almost always by active transport
- Na⁺ enters the tubule cells at the luminal membrane

 Is actively transported out of the tubules by a Na+-K+ ATPase pump

Mechanisms of tubular absorption & secretion

- Passive:
 - Diffusion facilitated diffusion
- Down chemical, electrical gradient

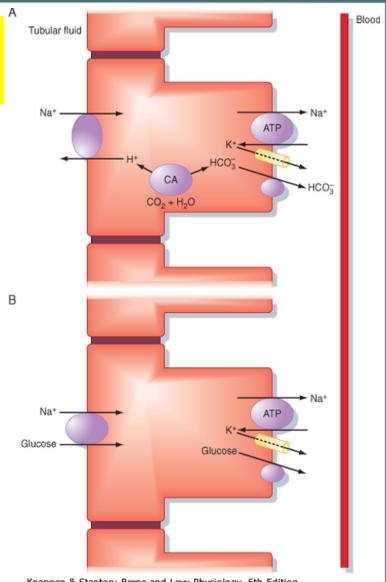
 Active transport endocytosis Against chemical, electrical gradient, need energy

Proximal convoluted tubule Na+ Reabsorption

- Leaky epithelium permeable to ions & water
- ~ 70 % of Na+, Cl-, K+, water absorbed passively (follows Na+)
- Na+ Reabsorption (transcellular):

Early PCT Na+ absorbed:

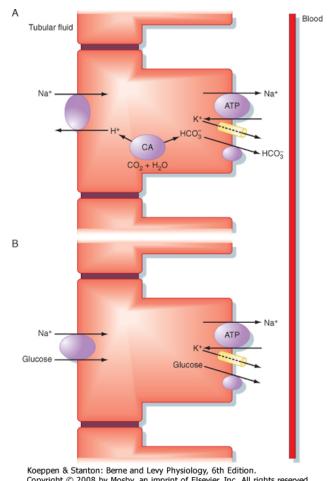
- exchanged with H+, but HCO3- reabsorbed
- 2) with organic substances glucose, amino acids, lactate, Pi

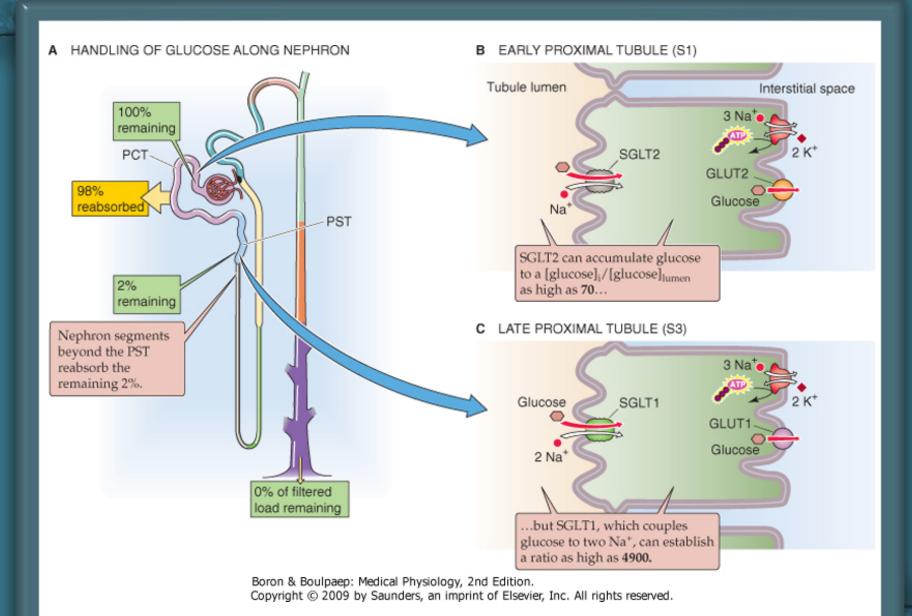

Na⁺/K⁺-ATPase important

PCT Na+ Reabsorption

- a) NHE takes up Na⁺ for H⁺
 - Causes reabsorption of HCO3-

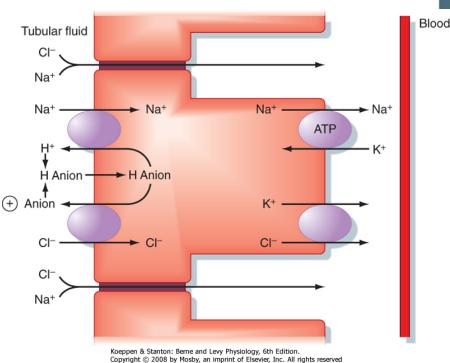
b) Symporters:

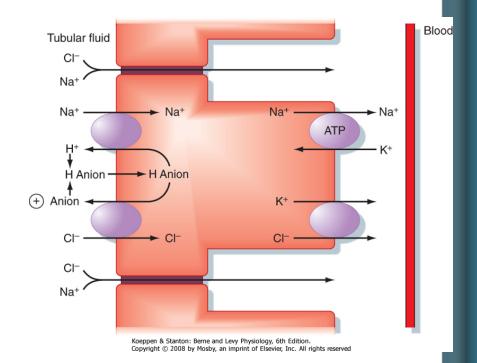

- Na+-glucose
- Na⁺-amino acid
- Na⁺-Pi
- Na⁺-lactate



Koeppen & Stanton: Berne and Levy Physiology, 6th Edition. Copyright © 2008 by Mosby, an imprint of Elsevier, Inc. All rights reserved

Glucose Reabsorption


- From tubular lumen to tubular cell: **Sodium co-transporter** (Carrier-mediated secondary active transport).
- From tubular cell to peritubular capillary: Facilitated diffusion (Carrier-mediated passive transport)


Late PCT Na+ Reabsorption

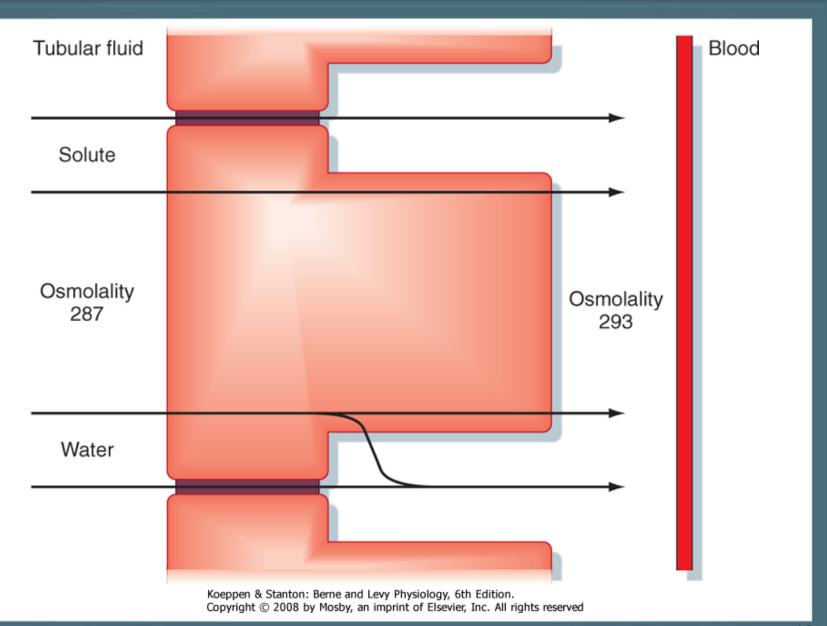
- Late PCT Na+
 Reabsorbed mainly with
 CI
- Why? due to different transport mechanisms in late PCT, lack of organic molecules
- a) Transcellular: Na+ entry using NHE

Late PCT Na+ Reabsorption

- b) Paracellular (passive diffusion) With Cl-
- driven by high [CI-] in tubule
- This conc. gradient favors diffusion of CI- from the tubular lumen a cross the tight junction into the lateral intercellular space.

Urea Reabsorption

Normal plasma level of urea 2.5-6.5 mM/L (15-39 mg/ 100ml)


Mechanism of urea reabsorption:

- About 40-70% of filtered load of urea is reabsorped in:
 - Second half of PCT.
 - Medullary CT and CD (ADH dependent)
- ➤ Due to water reabsorption in the first half of PCT, the conc. of urea is increased in the second half and urea is reabsorbed by simple diffusion (downhill)

A HANDLING OF UREA ALONG NEPHRON 110% remaining Juxtamedullary nephron PCT-Superficial nephron 100% 50% remaining remaining PST 60% secreted Vasa recta reabsorbed 40% of filtered load remaining

Water reabsorption

- PCT cells permeable to water
- PCT Reabsorbs 67% of filtered water.
- Transtubular Passive (osmosis), due to osmotic active substances that are absorbed e.g. Na+, glucose, HCO3-, Cl-
 - ⇒ ↓ tubule osmolality
 - ↑ intracellular space osmolality

Water reabsorption

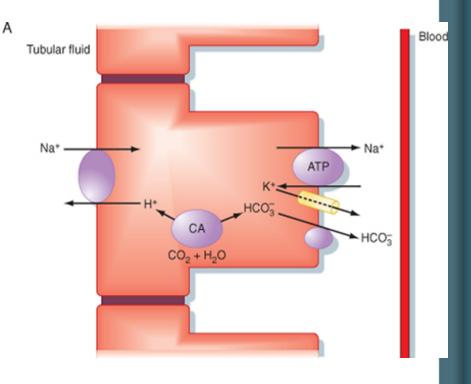
- Solvent drag: K+, Ca2+, carried with water & hence reabsorbed
- The accumulation of fluid and solutes within the lateral intercellular space increases hydrostatic pressure in this compartment
- The increased hydrostatic pressure forces fluid and solutes into the capillaries. Thus, water reabsorption follows solutes.
- The proximal tubule reabsorption is isosmotic

Protein reabsorption

- Peptide hormones, small proteins & amino acids reabsorbed in PCT
- Undergo Endocytosis into PCT, either intact or after being partially degraded by enzymes.
- Once protein inside the cell, enzyme digest them into amino acids, which leave the cell to blood.
- Has a maximum capacity
 - too much protein filtered = proteinuria

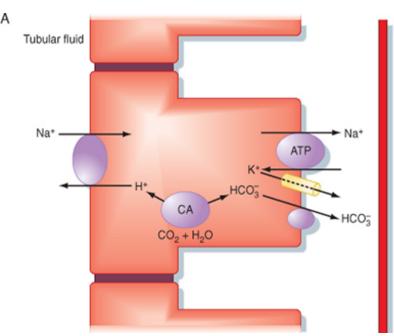
Organic ion/cation secretion

Endogenous compounds:


- End products of metabolism
- Bile salts
- Creatinine
- Catecholamines (adrenaline, noradrenailne)

Exogenous compounds:

- Penicillin
- NSAIDs (e.g. ibuprofen)
- Morphine

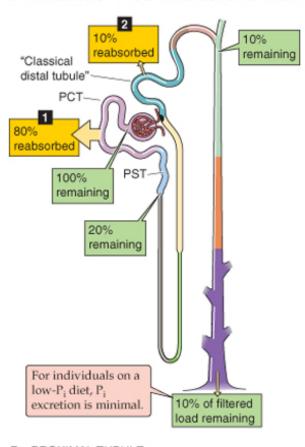

HCO₃- Reabsorption

- The renal tubules are poorly-permeable to HCO₃⁻. However, it is still reabsorbed but in the form of CO₂ (to which the tubules are very highly permeable).
- H⁺ is formed inside the cells then secreted in the tubular fluid.
- H⁺ combines with HCO₃⁻ in the tubular fluid forming H₂CO₃.

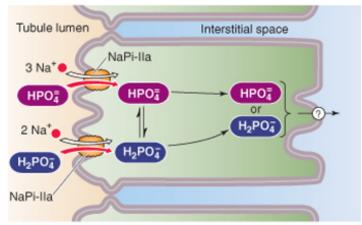
HCO₃- reabsorption

- 3. By activity of the carbonic anhydrase enzyme (C.A.) in the tubular cells, H₂CO₃ dissociates into CO₂ & H₂O.
- CO₂ diffuses into the cells where it combines with H₂O (by activity of an intracellular C.A.), forming H₂CO₃ which dissociates into HCO₃⁻ & H⁺.
- 7. HCO₃⁻ passively diffuses into the interstitial fluid (then to the blood) while H⁺ is secreted into the tubular fluid to help more reabsorption of HCO₃⁻.

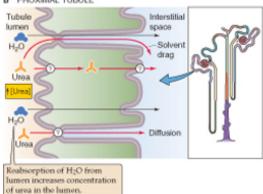
HCO₃- reabsorption

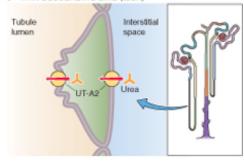

- Factors affecting **HCO**₃- reabsorption:
- 1. Arterial Pco₂
- 2. Plasma[K⁺]
- 3. Plasma Aldosterone.
- 4. Plasma [cl-]

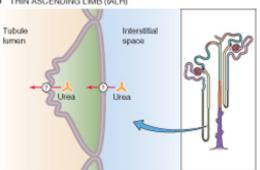
References

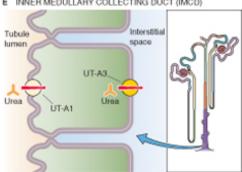

- Guyton and Hall Textbook of physiology
 - Chapter 27


A HANDLING OF PHOSPHATE ALONG NEPHRON


B PROXIMAL TUBULE


Boron & Boulpaep: Medical Physiology, 2nd Edition. Copyright © 2009 by Saunders, an imprint of Elsevier, Inc. All rights reserved. 25


B PROXIMAL TUBULE


C THIN DESCENDING LIMB (tDLH)

D THIN ASCENDING LIMB (tALH)

E INNER MEDULLARY COLLECTING DUCT (IMCD)

