Diuresis

By Dr. Ola Mawlana

Objectives

- To measure the volumes and determine the compositions of urine excreted by 4 groups:
 - (fasting / drunk 1 L water / drunk 1 L saline / took 1 tab of lasix).
- To be able to discuss the mechanisms by which the body maintain the water and sodium homeostasis in the 4 different conditions.
- Definition and clinical applications of:
- GFR (Glomerular Filtration Rate)
- C_{Cr} (Creatinine Clearance)

- Emptied their bladders at 8:00 am and discarded the urine.
- From 8:00 they are restricted to take any fluids and they are asked to provide various urine samples for analysis at:

10:00 am, 12:00 noon, 2:00 pm and 3:00 pm.

What will happen?

Subsequent urine sample is lesser in volume and darker yellow in color that shows the kidneys try to conserve water in fasting state.

Deprive of H₂O

1

Plasma osmolarity

1 Thirst

3

ADH secretion from posterior pituitary

Stimulates Osmoreceptors

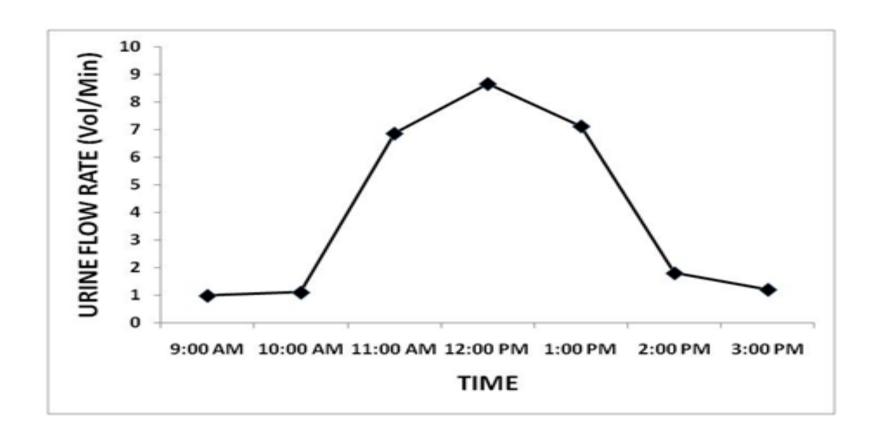
in anterior hypothalamus

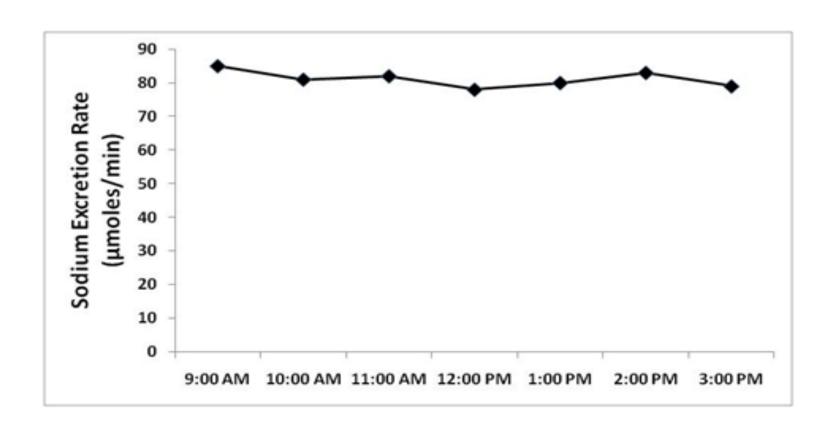
H₂O drinking

4

H₂O permeability in late distal tubule and collecting duct

Plasma Osmolarity
Toward Normal

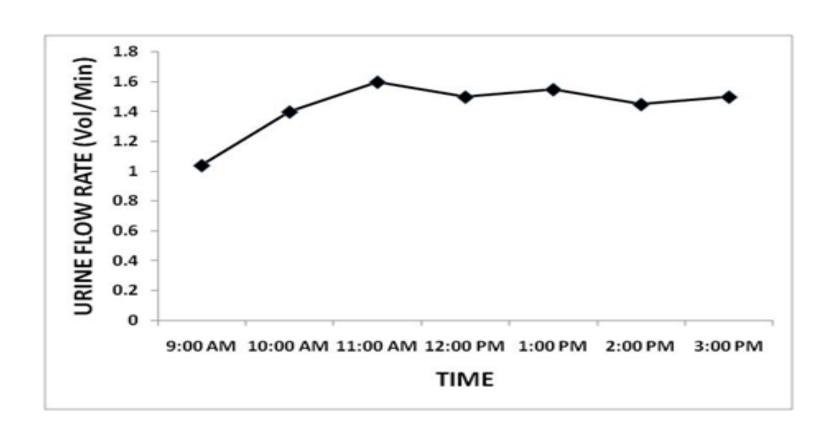

5b

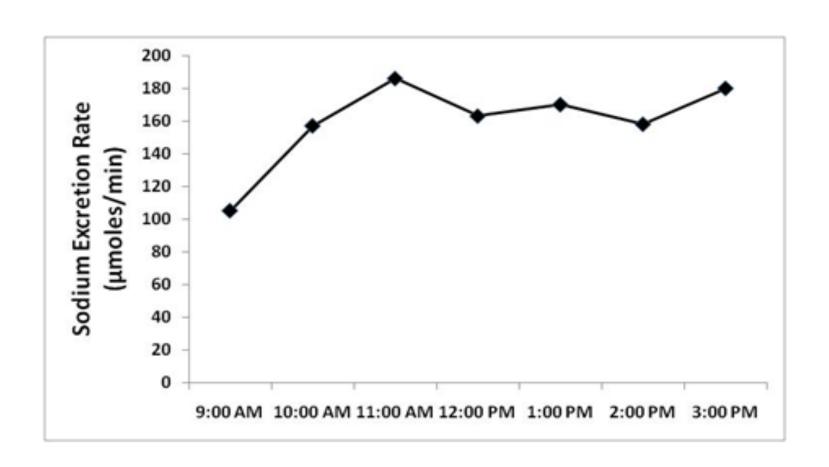

H₂O reabsorption

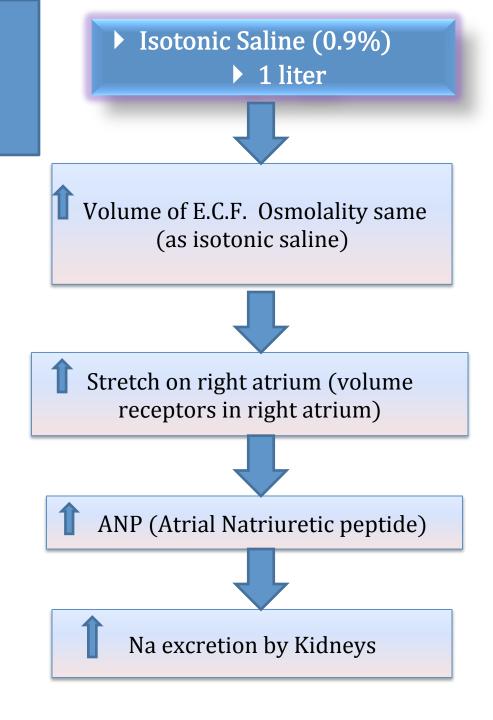
Urine osmolarity and urine volume

Group 2(Water Diuresis)

- Emptied their bladder at 08:00 am and discarded the urine.
- At 10:00 am emptied their bladder again, but this time they measured its volume and provided a sample for analysis. This sample will be preexperimental sample.
- Drank 1 liter of water immediately after providing the pre-experimental sample.
- Were then asked to empty their bladders and provide post-experimental samples every half an hour after drinking water until 3:00 pm.


Drink 1L H₂O Group 2 Plasma Osmolarity 3 Inhibits osmoreceptors in Thirst anterior hypothalamus ADH secretion from posterior pituitary H₂O drinking H₂O permeability in late distal tubule and collecting duct 5a H₂O reabsorption and excretion Plasma osmolarity 5b toward Normal Urine Osmolarity and urine volume

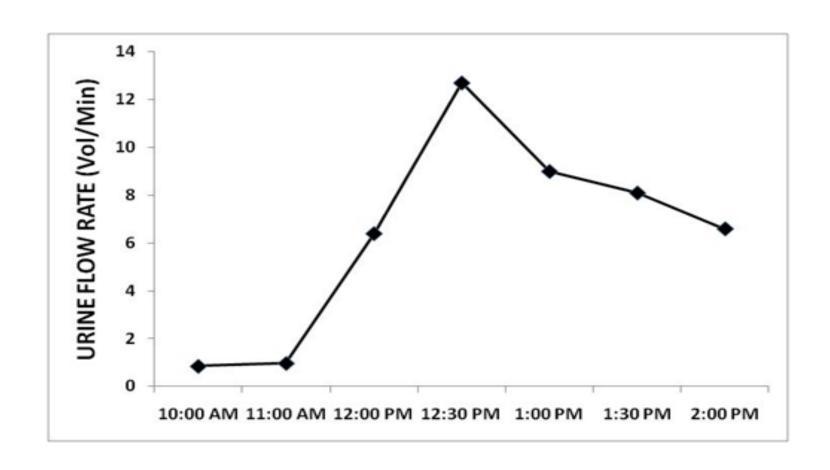

6


- Emptied their bladder at 7:00 am and discarded the urine.
- At 9:00 am emptied their bladder again, but this time they measured its volume and provided a sample for analysis. This sample will be pre-experimental sample.
- Drank 1 liter of 0.9% saline (isotonic saline) immediately after providing the pre-experimental sample.
- Were then asked to empty their bladders and provide post-experimental samples every hour after drinking saline until 3:00 pm.

Isotonic saline 0.9%

- Contains 154 mmol of NaCI, equivalent to 9 g of salt or 3.6 g of sodium.
- The sodium concentration of isotonic saline is equivalent to the normal sodium concentration of plasma water.

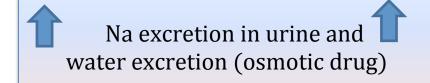
Group 4(Osmotic Diuresis)


- Emptied their bladder at 8:00 am and discarded the urine.
- At 10:00 am emptied their bladder again, but this time they measured its volume and provided a sample for analysis. This sample will be preexperimental sample.
- Swallowed a Lasix (Furosemide) tablet 40 mg with the help of 25 ml of water immediately after providing the pre-experimental sample.
- Were then asked to empty their bladders and provide post-experimental samples every hour after taking Lasix until 12:00 noon and then every half an hour until 3:00 pm.

What is Lasix?

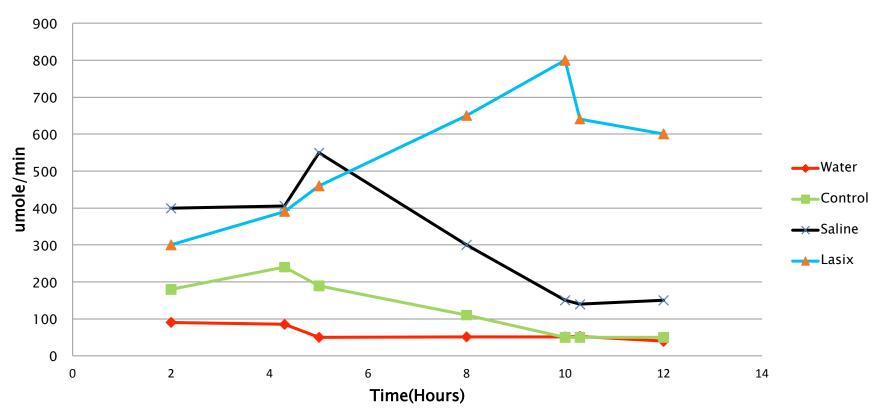
Furosemide is a loop diuretic used in the treatment of hypertension, congestive heart failure and edema.

It inhibits the sodium-potassium-chloride co-transport system located within the ascending limb of the Loop of Henle.


▶ 1 tab of Lasix (furosemide) (40mg)▶ with 25ml of water

Action starts 1-2 hours and lasts for 4-6 hours (1/2 life of furosemide is 6hr)

Acts on thick ascending limb of loop of Henle and blocks the Na-K-2Cl cotransport (called loop diuretic)



Na Excretion

Urine samples examination

- Volume (measuring cylinder)
- Sodium and potassium concentration (flame photometry)
- PH (PH meter)
- Osmolality (Osmometer)

Measuring cylinder

PH meter

Flame photometry

Osmometer

The table that we fill out during these experiments

SAMPLE NO.	1	2	3	4	5	6	7
COLLECTION TIME (minutes)	120	30	30	30	30	30	30
VOLUME OF URINE (ml)	118	33	200	280	240	60	50
URINE FLOW RATE (ml / min)	0.98	1.1	6.66	9.33	8	2	1.66
SODIUM CONCENTRATION (mmoles/liter)	87	65	12	10	8	30	40
TOTAL SODIUM EXCRETION (mmoles)	10.3	2.2	2.4	2.8	1.9	1.8	2.00
SODIUM EXCRETION RATE (μmoles/min)	85.6	71.5	80	93.3	64	60	66.7

Calculation

▶ Total sodium excretion is obtained by applying following equation:

Sodium excretion =
$$\frac{\text{Sodium concentration x Volume of urine}}{1000}$$

Sodium excretion rate is obtained by applying the following equation:

SAMPLE NO.	1	2	3	4	5	6	7
COLLECTION TIME (minutes)	120	30	30	30	30	30	30
VOLUME OF URINE (ml)	118	33	206	260	214	54	36
URINE FLOW RATE (ml / min)	0.98	1.1	6.87	8.67	7.13	1.8	1.2
SODIUM CONCENTRATION (mmoles/liter)	87	56	12	9	10	25	53
TOTAL SODIUM EXCRETION (mmoles)	10.3	1.8	2.5	2.3	2.1	1.4	1.9
SODIUM EXCRETION RATE (μmoles/min)	85.6	61.6	82.4	78	71.3	45	63.6

SAMPLE NO.	1	2	3	4	5	6	7
COLLECTION TIME (minutes)	120	30	30	30	30	30	30
VOLUME OF URINE (ml)	125	39	50	42	47	32	45
URINE FLOW RATE (ml / min)	1.04	1.30	1.67	1.40	1.57	1.07	1.50
SODIUM CONCENTRATION (mmoles/liter)	101	98	112	109	120	137	127
TOTAL SODIUM EXCRETION (mmoles)	12.6	3.8	5.6	4.6	5.6	4.4	5.7
SODIUM EXCRETION RATE (μmoles/min)	105.2	127.4	186.7	152.6	188.0	146.1	190.5

SAMPLE NO.	1	2	3	4	5	6
COLLECTION TIME (minutes)	120	60	42	18	30	30
VOLUME OF URINE (ml)	102	58	269	230	270	125
URINE FLOW RATE (ml / min)	0.85	0.97	6.4	12.7	9.0	4.2
SODIUM CONCENTRATION (mmoles/liter)	132	107	121	115	121	117
TOTAL SODIUM EXCRETION (mmoles)						
SODIUM EXCRETION RATE (µmoles/min)						

SAMPLE NO.	1	2	3	4	5	6
COLLECTION TIME (minutes)	120	60	42	18	30	30
VOLUME OF URINE (ml)	102	58	269	230	270	125
URINE FLOW RATE (ml / min)	0.85	0.97	6.4	12.7	9.0	4.2
SODIUM CONCENTRATION (mmoles/liter)	132	107	121	115	121	117
TOTAL SODIUM EXCRETION (mmoles)	13.5	6.2	32.5	26.4	32.6	14.6
SODIUM EXCRETION RATE (µmoles/min)	112.2	103	774	1467	1089	487.5

GFR (Glomerular Filtration Rate)

Definition:

Is the volume of fluid filtered from the renal glomerular capillaries into the Bowman's capsule per unit time.

According to the National Kidney Foundation, normal results range from 90 - 120 ml/min/1.73 m².

Abnormal Results of GFR

• A GFR < 60 mL/min/1.73 m² for 3 or more months chronic kidney disease.

• A GFR $< 15 \text{ mL/min}/1.73 \text{ m}^2$ kidney failure.

GFR (Glomerular Filtration Rate)

The test is recommended in:

- Diabetes
- Family history of kidney disease
- Frequent urinary tract infections
- Heart disease
- High blood pressure
- Urinary blockage

Creatinin Clearance (C_{Cr})

Definition:

The volume of blood plasma that is cleared of creatinine per unit time.

$$\mathbf{C_{cr}} = \frac{\mathbf{U_{cr}} \mathbf{X} \mathbf{V}}{\mathbf{P_{cr}}}$$

- (U_{Cr}) = creatinine concentration in the collected urine sample
- (V) = urine flow rate
- (P_{Cr}) = plasma concentration

Creatinin Clearance (C_{Cr})

Example:

A person has a plasma creatinine concentration of 0.01 mg/ml and in 1 hour produces 60ml of urine with a creatinine concentration of 1.25 mg/mL.

$$C_{Cr} = \frac{1.25mg/mL \times \frac{60mL}{60min}}{0.01mg/mL} = \frac{1.25mg/mL \times 1mL/min}{0.01mg/mL} = \frac{1.25mg/min}{0.01mg/mL} = 125mL/min$$

Normal values

Male: 97 to 137 ml/min.

Female: 88 to 128 ml/min.

Abnormal results for C_{Cr}

Abnormal results may indicate:

- Acute tubular necrosis
- Bladder outlet obstruction
- Congestive heart failure
- Dehydration
- End-stage kidney disease
- Glomerulonephritis
- Kidney failure
- Renal ischemia
- Renal outflow obstruction
- Shock

Thank You