Inborn Errors of Amino Acid Metabolism (Renal Block)

1 Lecture

Dr. Ahmed H. Mujamammi

Biochemistry of:

- Phenylketonuria (PKU)
- Maple Syrup Urine Disease (MSUD)
- Albinism
- Homocyteinuria
- Alkaptonuria

Inborn Errors of aa Metabolism

Caused by enzyme loss or deficiency due to gene loss or gene mutation

Phenylketonuria (PKU)

- Due to deficiency of phenylalanine hydroxylase enzyme
- Most common disease of aa metabolism
- Results in hyperphenylalaninemia

Phenylketonuria (PKU)

- Classic PKU:
 - ◆Due to deficiency of phenylalanine hydroxylase
- Conversion of Phe to Tyr requires tetrahydrobiopterin (BH₄)
- Even if phenylalanine hydroxylase level is normal
- The enzyme will not function without BH₄
- Hence Phe is accumulated

The pathway of phenylalanine degradation

Phenylketonuria (PKU)

Atypical hyperphenylalaninemia:

- ◆ Due to deficiency of BH₄
- ◆Caused by the deficiency of:
 - **★Dihydropteridine reductase**
 - *Dihydrobiopterin synthetase
 - *Carbinolamine dehydratase

Formation, utilization, and regeneration of 5,6,7,8-tetrahydrobiopterin (BH₄) in the phenylalanine hydroxylase reaction

Characteristics of PKU

■ In the absence of BH₄, Phe will not be converted to Tyr

Phe accumulated

Tyrosine

Phenylalanine

H

 NH_3^+

-CH₂-C-COO-

 NH_3^+

Melanin biosynthesis from tyrosine

Characteristics of PKU

- Tyr will not be converted to catecholamine neurotransmitters
- Synthesis of catecholamines requires BH₄

Figure 19.50. Synthesis of catecholamines.

Characteristics of PKU

Trp will not be converted to serotonin (a neurotransmitter) as it requires BH₄

Synthesis of serotonin

Characteristics of PKU

- CNS symptoms: Mental retardation, failure to walk or talk, seizures, etc.
- Hypopigmentation
 - ◆ Deficiency of melanin
 - Hydroxylation of tyrosine by tyrosinase is inhibited by high phe conc.

Characteristics of PKU

- Elevated phenylalanine in tissues, plasma, urine
- Phe is degraded to phenyllactate, phenylacetate, and phenylpyruvate
 - ◆ Gives urine a mousy odor

Cause of mousy urine smell in PKU

Characteristics of PKU

- Prenatal diagnosis is done by detecting gene mutation in fetus
- Neonatal diagnosis in infants is done by measuring blood phe levels
- Treatment:
 - ◆ Life long phe-restricted diet

Maple Syrup Urine Disease

- Due to deficiency of branched chain αketoacid dehydrogenase
- The enzyme decarboxylates leucine, isoleucine and valine
- These aa accumulate in blood
- Symptoms: mental retardation, physical disability, metabolic acidosis, etc.
- Maple syrup odor of urine

Maple Syrup Urine Disease

Types:

- Classic type: Most common, due to little or no activity of α-ketoacid dehydrogenase
- ◆Intermediate and intermittent forms: Some enzyme activity, symptoms are milder
- ◆ Thiamin-responsive form: High doses of thiamin increases α-ketoacid dehydrogenase activity

Degradation of branched-chain amino acids: valine, isoleucine and leucine. Deficiency of branched chain a-keto acid dehydrogenase leads to MSUD.

Maple Syrup Urine Disease

Treatment:

Limited intake of leucine, isoleucine and valine

Albinism

- A disease of tyrosine metabolism
- Tyrosine is involved in melanin production
- Melanin is a pigment of hair, skin, eyes
- Due to tyrosinase deficiency
- Melanin is absent in albino patients
- Hair and skin appear white
- Vision defects, photophobia

Melanin biosynthesis from tyrosine: Deficiency of tyrosinase leads to albinisim

Homocystinuria

- Due to defects in homocysteine metabolism
- Deficiency of cystathionine β-synthase
 - ◆Converts homocysteine to cystathione
- High plasma and urine levels of homocysteine
- High plasma homocysteine is a risk factor for atherosclerosis and heart disease
- Skeletal abnormalities, osteoporosis, mental retardation, displacement of eye lens

Voet *Biochemistry* 3e Page 1002 © 2004 John Wiley & Sons, Inc.

Methionine degradation pathway: Deficiency of cystathione β synthase leads to homocystinuria / homocysteinemia

Homocystinuria

Treatment:

- ◆Oral administration of vitamins B₆, B₁₂ and folate
- Vitamin B₆ is a cofactor for cystathionine βsynthase
- ◆Methionine-restricted diet

Homocysteinemia

Hyperhomocysteinemia is also associated with:

- Neural tube defect (spina bifida)
- Vascular disease (atherosclerosis)
- Heart disease

Methionine degradation pathway: Deficiency of cystathione β -synthase leads to hyperhomocystinuria / hyperhomocysteinemia

Alkaptonuria

- A rare disease of tyrosine degradation
- Due to deficiency of homogentisic acid oxidase
- Homogentisic acid is accumulated in tissue and cartilage
- Homogentisic aciduria: elevated homogentisic acid in urine

Alkaptonuria

- Homogentisic acid is oxidized to dark pigment in urine over time
- Arthritis, black pigmentation of cartilage and tissue
- Usually asymptomatic until adulthood
- Restricted intake of tyrosine and phenylalanine reduces homogentisic acid and dark pigmentation

Degradation of tyrosine
Deficiency of homogentisic acid
oxidase leads to alkaptonuria