(Renal Physiology 10 &11) Acid-Base Balance 2 & 3 Buffer System & Acid Base Disorders

Ahmad Ahmeda

aahmeda@ksu.edu.sa

Respiratory Regulation of Acid-Base Balance

Pulmonary expiration of CO₂ normally BALANCES metabolic formation of CO₂.

Changes in alveolar ventilation can alter plasma Pco₂

- \uparrow ventilation, \downarrow Pco₂, \uparrow pH
- \downarrow ventilation, \uparrow Pco₂, \downarrow pH

Changes in [H⁺] also alters ALVEOLAR VENTILATION.

Respiratory Regulation of Acid-Base Balance

POWERFUL (1-2 x better than extracellular chemical buffers), but <u>cannot fully rectify</u> disturbances outside respiratory system, *i.e.* with fixed acids like lactic acid.

Acts relatively RAPIDLY to stop [H⁺] changing too much until renal buffering kicks in but <u>DOES NOT</u> eliminate H⁺ (or HCO₃⁻) from body.

Abnormalities of respiration can alter bodily [H⁺] resulting in;

- **RESPIRATORY ACIDOSIS** or
- RESPIRATORY ALKALOSIS.

Renal Regulation of Acid-Base

- MOST EFFECTIVE regulator of pH but much SLOWER (*i.e.* max. activity after 5-6 days) than other processes.
- Responsible for ELIMINATING the 80 -100 mEq of fixed ACIDS generated each day.
- Normally, must also PREVENT renal LOSS of freely filterable HCO₃⁻ in order to preserve this primary buffer system.
- BOTH PROCESSES are dependent on both H⁺ filtration / secretion into renal tubules and secretion / reabsorption of plasma [HCO₃⁻].
- Kidneys also responsible for COMPENSATORY CHANGES in [HCO₃⁻] during respiratory acid-base disorders.

* IF KIDNEYS FAIL, pH BALANCE WILL FAIL *

Renal Regulation of Acid-Base

Overall mechanism straightforward:

- large [HCO₃-] continuously filtered into tubules
- large [H⁺] secreted into tubules
- \Rightarrow if more H⁺ secreted than HCO₃⁻ filtered
 - = a net loss of $\underline{acid} \Rightarrow \uparrow pH$
- ⇒ if more HCO_3^- filtered than H⁺ secreted = a net loss of <u>base</u> ⇒ ↓pH

H⁺ / HCO₃⁻ Control by the Kidney Renal H⁺ Secretion

- H⁺ enters filtrate by FILTRATION through glomeruli and SECRETION into tubules.
- Most H⁺ secretion (80%) occurs across wall of PCT via Na⁺/H⁺ antiporter (& H⁺ - ATPase in type A cells of DCT).
 - This H⁺ secretion enables HCO₃⁻ reabsorption.
- The primary factor regulating H⁺ secretion is systemic acid-base balance
- a) ACIDOSIS stimulates H⁺ secretionb) ALKALOSIS reduces H⁺ secretion

H⁺ / HCO₃⁻ Control by the Kidney Bicarbonate Handling

HCO₃⁻ FREELY FILTERABLE at glomeruli (3 mM/min) and undergoes significant (> 99%) reabsorption in PCT, aLoH & cortical collecting ducts (CCDs).

 Mechanisms of HCO₃⁻ reabsorption at PCT (& aLoH) and CCD are similar but not identical

Renal HCO_3^- reabsorption is an ACTIVE process - BUT dependent on tubular secretion of H⁺, NO <u>apical</u> transporter or pump for HCO_3^- .

Copyright © 2008 by Mosby, an imprint of Elsevier, Inc. All rights reserved

Disturbances of Acid-Base Balance

- Acid-base disturbances may be either RESPIRATORY or METABOLIC.
- PH problems due to a respiratory disorder result in RESPIRATORY acidosis or alkalosis.
 - pH problems arising from acids or bases of a non-CO₂ origin result in METABOLIC acidosis or alkalosis.

Respiratory Acidosis

Respiratory Acidosis

- Associated with RESPIRATORY FAILURE (e.g. COPDs like emphysema).
 - Inadequate alveolar ventilation
 - Impaired gas diffusion (*e.g.* pulmonary oedema)
- Characterised by \uparrow Pco₂ (hypercapnia) and \downarrow plasma pH.
- Initial response is increased conversion of CO₂ to H⁺ and HCO₃⁻.
 - **INCREASE** in ECF [H⁺] **and** plasma [HCO₃⁻].
- INCREASED i) renal SECRETION OF H⁺ and ii) ABSORPTION OF HCO₃⁻ is COMPENSATORY MECHANISM

Davenport Diagram Acid-base alterations

Respiratory Acidosis

↓ plasma pH, ↑ Pco₂, ↑ plasma [HCO₃⁻]

Respiratory Alkalosis

Respiratory Alkalosis

- Reduced plasma Pco₂ (hypocapnia) and elevated pH
- Caused by increased gas exchange mainly due to HYPERVENTILATION
 - Anxiety / fear
 - High altitude

- Characterised by \downarrow Pco₂ and \uparrow plasma pH.

- Reduction in Pco₂ shifts buffering reaction to the left
 DECREASE in ECF [H⁺] and plasma [HCO₃⁻]
- DECREASED i) renal SECRETION of H⁺ and ii) ABSORPTION of HCO₃⁻ is COMPENSATORY MECHANISM.

Davenport Diagram Acid-base alterations

60 100 90 120 80 70 60 50 40 110 56 52 35 Pco₂ (mm Hg) 48 Metabolic Arterial plasma [HCO₃⁻] (mEq/L) 44 30 alkalosis Chronic respiratory 40 acidosis Acute 36 25 respiratory 32 acidosis 28 20 24 Normal Acute 15 20 respiratory alkalosis 16 10 12 Metabolic Chronic acidosis. 8 respiratory Pco₂ (mm Hg) alkalosis 4 0 7.00 7.10 7.20 7.30 7.60 7.70 7.80 7.40 7.50 Arterial blood pH

Respiratory Alkalosis

↑ plasma pH, \downarrow Pco₂, \downarrow plasma [HCO₃⁻]

Metabolic Acidosis & Alkalosis

- Metabolic acidosis and alkalosis includes all situations other than those in which primary problem is respiratory.
- By definition, metabolic acidosis and alkalosis cannot be due to excess retention or loss of CO₂
 - does arterial Pco₂ remain unchanged in these cases?

NO!

- ↑ [H⁺] in acidosis will reflexly stimulate ventilation to lower Pco₂. Conversely, ventilation will be inhibited in alkalosis to restore [H⁺].
- Remember, plasma Pco₂ changes during metabolic acidosis / alkalosis are a *result* of, not *cause* of, compensatory reflex responses to non-respiratory abnormalities.

Metabolic Acidosis

Caused by either i) INCREASED acid production or

ii) **IMPAIRED** acid *excretion*.

Can occur in response to;

- 1) High protein diet protein catabolism produces phosphoric acid and sulphuric acid.
- 2) High fat diet fat catabolism produces fatty acids.
- 3) Heavy exercise stimulates anaerobic metabolism, producing lactic acid.
- 4) Addition of fixed acids (e.g. diabetic ketoacidosis).
- 5) Severe diarrhoea loss of bicarbonate from intestines.
- 6) Alterations in renal function (inability to excrete H⁺).
- 7) Tissue hypoxia (produces lactic acid)
- 8) Ingested substances such as methanol, aspirin (acetylsalicylic acid), ethylene glycol.

Metabolic Acidosis

First line of defence is shift of buffering reactions to the left to neutralise excess acid (for bicarbonate, cell* & bone buffers).

$$CO_2 + H_2O \stackrel{CA}{\underset{carbonic \ acid}{\longleftrightarrow}} H_2CO_3 \underset{bicarbonate}{\longleftrightarrow} H^+ + HCO_3^-$$

- Metabolic acidosis increases ventilation rate via chemoreceptor activation.
- Increased expiration of CO₂ reduces Pco₂ levels which increases pH of ECF (respiratory compensation).
- ➢ Acidosis INCREASES renal SECRETION of H⁺ and ABSORPTION of HCO₃⁻ ⇒ ECF [HCO₃⁻] increases.
 - Characterised by DECREASED [HCO₃-] (<25mM) and pH.</p>

Davenport Diagram Acid-base alterations

Metabolic Acidosis

↓ plasma pH, ↓ plasma [HCO₃⁻] ↓ Pco₂,

Metabolic Acidosis

* Uptake of excess H⁺ by cells is accompanied, in part, by LOSS of *intra*cellular K⁺ (and Na⁺) to *extra*cellular fluid to maintain ELECTRONEUTRALITY.

- Thus, metabolic acidosis often associated with INCREASED plasma [K⁺] relative to that expected from state of potassium balance.
- HYPERKALEMIA can develop even though body K⁺ stores are diminished.

Cation shift is REVERSED with correction of acidosis.

Metabolic Alkalosis

Relatively rare phenomenon that can occur in response to;

1) Excessive vomiting – loss of HCl from stomach (... retention of

(duodenal) bicarbonate in circulation).

- 2) Alterations in renal function (↑ excretion of titratable acid e.g., thiazide and loop diuretics ↑Na⁺ reabsorption → ↑excretion of H⁺).
- 3) Excessive ingestion of bicarbonate antacids paired with renal failure.
- 4) Volume contraction (*e.g. via* diuretic therapy \uparrow plasma [HCO₃⁻]). 5) Excess aldosterone (stimulates collecting duct H⁺-ATPases to excrete H⁺).
- ▶ Loss of acid \uparrow dissociation of $H_2CO_3 \Rightarrow \uparrow HCO_3^-$.
- Increase in pH REDUCES ventilation rate, elevating Pco₂ levels.
- > Reduction in renal absorption and \uparrow excretion of HCO₃⁻ in the nephron.
- Characterised by ELEVATED plasma [HCO₃⁻] and pH.

Davenport Diagram Acid-base alterations

Metabolic Alkalosis

-plasma pH, \uparrow \uparrow plasma [HCO₃-], \uparrow Pco₂,

How to Analyze an ABG

- 1. PO_2 NL = 80 100 mmHg
- 2. pH NL = 7.35 7.45 Acidotic <7.35 Alkalotic >7.45
- 3. PCO_2 NL = 35 45 mmHg Acidotic >45 Alkalotic <35

4. HCO_3

NL = 22 - 26 mmol/LAcidotic < 22 Alkalotic > 26

Analysis of Acid-Base Disorders

e.g. pH = 7.30[HCO₃⁻] = 16mEq/L PCO2 = 30 mm Hg

- 1) Evaluate pH acid
- 2) Metabolic or respiratory source? $[HCO_3^-] < 24mM = metabolic$
- 3) Analysis of compensatory response.
 ↓ PCO₂ respiratory compensation

Copyright © 2008 by Mosby, an imprint of Elsevier, Inc. All rights reserved

Mixed acid-base disorders can also occur (*e.g.* emphysema with diarrhea) in which an appropriate compensatory response has not occurred. 1) A 50 year-old man with history of type 2 diabetes was admitted to the emergency department with history of polyuria. On examination he had rapid and deep breathing. Blood analysis showed glucose level of 400 mg/dl.

- The following is the arterial blood analysis report of this patient:
- pH = 7.1, PCO² = 40 mmHg and HCO³- = 18 mmol/L
- (Normal reference ranges: PCO2 = 36.0-46.0 mmHg, HCO3- = 22.0-26.0 mmol/L)
- What is the acid base disturbance in this case?

2) PH= 7.12, PaCO2= 60mmHg, HCO3⁻ = 24meq/L.

a) Compensated metabolic acidosis.
b) Uncompensated metabolic acidosis,
c) Compensated respiratory acidosis,
d) Uncompensated respiratory acidosis,

3) PH= 7.51, PaCO2= 40mmHg, HCO3⁻ = 31meq/L.

- a) Normal,
- b) Compensated respiratory acidosis,
- c) Uncompensated respiratory alkalosis.
- d) Uncompensated metabolic alkalosis,

