(Renal Physiology 6) Renal Transport Process 2

Ahmad Ahmeda

aahmeda@ksu.edu.sa

Loop of Henle

- 25% NaCl, K+ absorbed as well as Ca₂⁺, HCO₃⁻occurs in thick ascending limb (TAL)
- impermeable to water
- 15% water absorbed in thin descending limb
- permeable to water

Loop of Henle

- Solute absorption (TAL):
- 1) Transcellular (50%)
 - a) Na+/2CI-/K+ cotransporter/ symporter b) NHE
 - i) Na+ in ii) H+ out iii) HCO3- in

I ransport mechanisms for NaCI reabsorption in the thick ascending limb of Henle's loop.

Loop of Henle

2) Paracellular (50%)

- Loss of NaCl in tubule
 - $\Rightarrow \uparrow \text{ positive}$ charge compared to blood drives absorption

Distal convoluted tubule (DCT) & collecting duct (CD)

- 7% NaCl
- 8 15 % water reabsorbed (needs ADH)
- Some K⁺, H⁺ secreted into tubule
- Early DCT:
- Reabsorbs Na⁺, Cl⁻ and Ca⁺⁺ (impermeable to water)

Koeppen & Stanton: Berne and Levy Physiology, 6th Edition. Copyright C 2008 by Mosby, an imprint of Elsevier, Inc. All rights reserved

Distal convoluted tubule (DCT) & collecting duct (CD)

Late DCT:

• 2 cells:

1) principle cells: reabsorb Na+, water, secrete K+

- 2) intercalated cells: secrete or reabsorb H+ (inverse for HCO3-), reabsorb K⁺
- Na⁺ diffuses via selective channels
- K⁺ secreted down concentration.

Factors affecting Na reabsorption

- 1. GFR: when increased causes an increase in filtration of Na which sensitise the macula densa.
- 2. Aldosterone.
- 3. Estrogens: Increase reabsorption of Na and decrease Na excretion.
- 4. Natriuretic hormone.
- 5. Osmotic diuresis (Increase Glucose, Mannitol and Urea) increase their conc. In the filtered load then causes a decrease in water reabsorption and Na.
- 6. Diuretic Drugs (Lasix)
- 7. Poorly reabsorbed anions causes retention of equal amount of Na.

Transport of potassium

- Most abundant cation in the body
- 3,500-4,000 mmol in blood.
- 98 % is intracellular, [150mM]
 - Regulates intracellular function such as Cell volume, Acid/base status, cell growth & division
- 2% K extra-cellular [3.5-5mM]
 - This regulates membrane potentials in excitable cells and diffusion potentials in transporting epithelia.

- K⁺ Intake 80-120 mmol/day
- Tissue damage leading to cell lysis increases plasma [K⁺]
- Both extracellular [K⁺] and total body potassium are tightly regulated.

HOW?

INTERNAL DISTRIBUTION (This regulates extracellular [K⁺])

RENAL K⁺ EXCRETION (This regulates total body potassium)

Internal potassium distribution

- Potassium content of average meal is 30-40mmol. This is rapidly absorbed.
- Renal elimination is slow. It can take up to six hours eliminate this load.
- If nothing happened then this absorbed load would cause
 Plasma [K⁺] to rise by ~ 2-5mmol which is potentially lethal.
- Buffering of the load occurs by increased intracellular uptake via Na⁺/K⁺ pump into Skeletal Muscle, Liver, Bone RBCs etc.
- Loss of K⁺ from exercising muscle can seriously increase plasma K⁺, trained athletes show accelerated uptake after exercise

Renal excretion of potassium

- 90-95% of Dietary K excreted via the kidneys
- 5-10% in Sweat & Feces (This is unregulated and may become significant in diarrheas)
- In normal individual intake is matched by excretion and potassium balance is maintained.
- Filtered load of potassium ~ 720 mmol/day
- Bulk absorbed by proximal tubule and loop of Henle.

© Elsevier Ltd. Boron & Boulpaep: Medical Physiology, Updated Edition www.studentconsult.com

© Elsevier Ltd. Boron & Boulpaep: Medical Physiology, Updated Edition www.studentconsult.com

Renal K⁺ Transport mechanisms

- Cell membrane transporters
 - Na⁻K ATPase, H⁻K ATPase
 - K⁺ channels, K:CI cotransport
 - Na:K:2CI cotransport
- K⁺ is Reabsorbed in PT, TAL & intercalated cell in CCD
- K⁺ Secreted in late distal tubule and in principal cells of late DT & CCD

 Proximal Tubule: K⁺ is absorbed by intercellular solvent drag whereby fluid movement driven by Na⁺ absorption entrains K⁺ ions

- TAL: Na:K:2Cl in luminal membrane
- K:Cl co-transport in baso-lateral membrane

CD: K reabsorption is by the intercalated cells via a luminal H-K ATPase.

C CORTICAL COLLECTING TUBULE (CCT): α INTERCALATED CELL

 CD: K+ secretion in the principal cells (via luminal K channels and basolateral Na-K ATPase).

Factors affecting potassium secretion

Peritubular factors:

1.Hyperkalemia: increase K in tubular cells, increase chemical gradient of K between tubular cell and tubular lumen which lead to increase in the secretion and excretion of K.

2.Hyper-aldosteronism: increase aldosterone increase secretion and excretion of K.

3.Alkalosis: increase H-K exchange at baso-lateral membrane then increase secretion and excretion of K.

Factors affecting potassium secretion

Luminal factors:

1.Diuresis: increase volume of urine and decrease conc of K in lumen which causes secretion via chemical gradient. (increase secretion and excretion)

2.Increased urinary excretion of Na: increase in Na-K exchange at luminal membrane causes an increase in secretion and excretion of K.

3.Increased urinary excretion of bicarbonate, phosphate, sulphate and ketone acids: increase negativeness of lumen then increase electrochemical gradient between cell and lumen causes secretion and excretion of K.