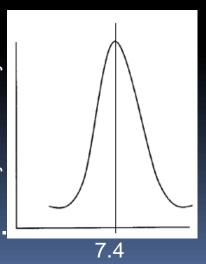
(Renal Physiology 9) Acid-Base Balance 1 Basics of Acid Base

Ahmad Ahmeda

aahmeda@ksu.edu.sa


Acid – Base Balance Why is control of [H⁺] so important?

Highly reactive chemical species (protons).

- combine easily with negatively charged ions and bases.
- Precise [H+] regulation is vital because activity of almost all enzyme systems / proteins (inc. ion channels) influenced by pH (e.g. hydrogen bonding and charge on proteins altered by pH .: tertiary structure and function affected.)

Most enzymes function optimally at pH ~ 7.4 (except gastric enzymes).

Acid-base imbalances can cause cardiac arrhythmias and abnormal neuronal excitation

pН

activity

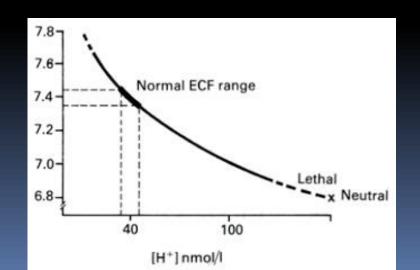
Acid – Base Balance Definitions (Bronsted-Lowry)

- ➤ ACIDS Molecules containing hydrogen atoms that can release (DONATE) H⁺ into solution (*e.g.* HCI ⇔ H⁺ + CI⁻).
- **STRONG** acids all their H^+ is dissociated completely in H_2O .
- WEAK acids dissociate partially in H₂O and are efficient at preventing pH changes.
- ► BASES (a.k.a. alkalis) ions or molecules that can ACCEPT
 H⁺ (e.g., HCO₃⁻ + H⁺ ⇔ H₂CO₃).
- STRONG bases dissociate easily in H₂O and quickly bind H⁺.
- WEAK bases accept H⁺ more slowly (*e.g.*, HCO₃⁻ and NH₃) Proteins in body function as weak bases as some constituent AMINO ACIDS have net negative charge and attract H⁺ (*e.g.* HAEMOGLOBIN).

Physiologically important acids include: Carbonic acid (H_2CO_3) Phosphoric acid (H_3PO_4) Pyruvic acid $(C_3H_4O_3)$ Lactic acid $(C_3H_6O_3)$ These acids are dissolved in body fluids

Physiologically important bases include: Bicarbonate (HCO₃⁻) Biphosphate (HPO₄⁻²)

Acid – Base Balance pH Scale (Sørensen, 1909)


➢ Relative to other ions, [H⁺] of body fluids kept VERY LOW e.g., ECF [Na⁺] ≈ 145 mM/L, ECF [H⁺] ≈ 0.00004 mM/L (40nM) (~ 3.5 million fold difference).

➢ Because [H⁺] so low, easier to express [H⁺] on a logarithmic scale ⇒ pH units.
 pH = log 1/(H⁺) = -log [H⁺]
 ➢ Normal pH = -log [0.00000004] M = 7.4

14		1 M NaOH
13-	-	
12-	-	- Chemical hair removers
11-		- Household ammonia
10-		- Soap solutions
9 - 8.5 - 8 - 7.7 ⁻ 6.5 - 6-5 -		Baking soda Pancreatic secretions Compatible with human life Saliva
5-		- Urine (4.5–7)
4 -		Tomatoes, grapes
3 -	-	Vinegar, cola
2 -	-	Lemon juice
1-		Stomach acid
0		

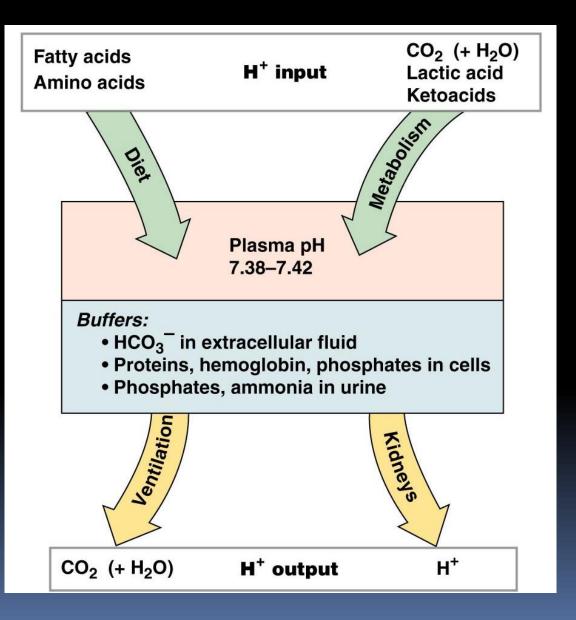
Acid – Base Balance pH Scale (Sørensen, 1909)

- pH INVERSELY related to [H+], i.e.
 - as [H⁺] ↑, pH falls acidosis (below 7.35)
 - as [H⁺] J, pH increases alkalosis (above 7.45)
- Normal <u>BLOOD</u> pH range for adults = 7.35 7.45 maintained by chemical buffer systems, kidneys and lungs.
 DEATH likely if pH 17.8 or 16.8.

14	1 M NaOH
13-	
12-	 Chemical hair removers
11-	– Household ammonia
10-	 Soap solutions
9-	
8.5 -	– Baking soda
8-	– Pancreatic secretions
7.7+	Compatible with human life
7-	
6.5	– Saliva
6 -	
5-	– Urine (4.5–7)
4 -	– Tomatoes, grapes
3_	– Vinegar, cola
2-	– Lemon juice
1-	Stomach acid
0	

Sources of H⁺

The body generally PRODUCES more acids than bases.


1) Cellular aerobic metabolism produces 15,000 mmol CO_2/day . $CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3^-$ (volatile acid)

Normally all volatile acid excreted by the lungs.

2) DIET – incomplete metabolism of carbohydrates (lactate) lipids (ketones) and proteins (H₂SO₄, H₃PO₄) generates fixed (non-volatile) acids – ~50 -100 mEq per day.

In order to maintain balance, acids need to be BUFFERED and/or EXCRETED.

Hydrogen and pH Balance in the Body

Catabolism of sulphur containing AA gives H_2SO^4

Catabolism of phospholipids/ phosphoproteins give H₃PO⁴

How is [H⁺] Controlled?

Three systems involved;

- 1) **BUFFERS** first defence
 - second to second regulation of [H+]
- 2) Excretion of CO_2 ($\downarrow H_2CO_3$) by LUNGS (removal of volatile acid) second defence
 - regulation in minutes to hours
- 3) Excretion of H⁺ (\uparrow HCO₃⁻) by **KIDNEYS** (fixed acids)
 - third defence
 - regulation over several hours to days
 - slowest, but most POWERFUL, of body's acid-base regulatory systems.

Relative concentrations of CO₂ and HCO₃⁻ in plasma / ECF determine pH (HENDERSON-HASSELBALCH equation).

(show the relationship between pH, hydrogen ion conc. and the ratio of buffer membrane in a solution)

HENDERSON-HASSELBALCH equation

$$pH = pK' + \frac{\log [HCO_3^{-}]}{sPCO_2}$$

pH is the negative logarithm of H⁺ in mol/L. pK' is negative logarithm of overall dissociation constant for the reaction = 6.1 in health. s is solubility of CO_2 in solution = 0.03 at 37°C

$$pH = 6.1 + \frac{\log [HCO_3^{-1}]}{0.03 \times PCO_2}$$

In health, $[HCO_3^-] = 24 \text{ mmol/L} \& PCO_2 = 40 \text{ mm Hg}$

7.4 = 6.1 + 1.3

What happen to the pH using H-H

In case if the HCO₃ in Plasma remains normal

 If Pco₂ increased, the ratio of [HCO₃]P/ 0.03 Pco₂ will decrease which lead to acidosis.

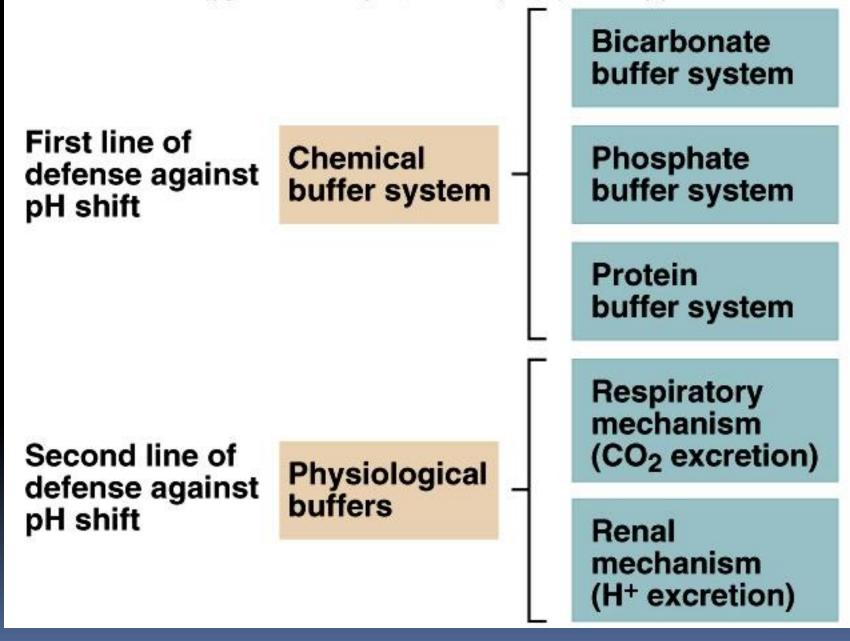
In case the Pco₂ remains normal

 Increase bicarbonate in plasma causes an increase in the ratio which leads to alkalosis.

- If Pco₂ decrease, the ratio will increase and pH will increase causing alkalosis.
- Decrease in bicarbonate in plasma causes a decrease in the ratio which leads to acidosis.

Control of [H⁺] - Buffers

Buffer is substance that stabilises (limits the change of) [H⁺] when H⁺ ions are added or removed from a solution.


- They <u>do not</u> eliminate H⁺ from body **REVERSIBLY** bind H⁺ until balance is re-established.
- General form of buffering reaction usually in form of conjugate acid-base pair:

 $HA \Longrightarrow H^+ + A^-$

HA = undissociated acid $A^{-} =$ conjugate base (any anion)

Reaction direction (& dissociation rate) dependent on effective concentration of each chemical species.

If [H⁺][↑] then equation moves leftwards and vice versa if [H⁺][↓] - minimises changes in [H⁺].

Control of [H⁺] - Buffers

What buffer systems exist in the body?

1) Bicarbonate buffer system

- Most important buffering system. Works by acting as proton acceptor for carbonic acid.

$$CO_2 + H_2O \stackrel{CA}{\underset{carbonic \ acid}{\longleftrightarrow}} H_2CO_3 \underset{bicarbonate}{\longleftrightarrow} H^+ + HCO_3^-$$

\succ [H₂CO₃] very low (6800 x less than HCO₃⁻)

- > To maintain pH of 7.4, HCO_3^- : $H_2CO_3 = 20:1 if ratio changes, so too will pH.$
- When enough [H⁺] added to halve [HCO₃⁻], pH would drop to 6.0, <u>BUT</u>, H₂CO₃ ⇔ H₂O + CO₂ → ventilation↑ and CO₂ is removed.
- \succ : buffering means that **pH only drops to ~ 7.2**.

Control of [H⁺] - Buffers 2) Phosphate Buffering System

- Phosphate buffer system not important as extracellular fluid buffer (concentration too low).
- However, major INTRACELLULAR buffer and important in RENAL TUBULAR FLUID.
- \blacktriangleright Main components are HPO₄²⁻ and H₂PO₄⁻

 $H^+ + HPO_4^{2-} \leftrightarrow H_2PO_4^{--}$

(Strong acid converted to weak acid ∴ less effect on pH)

 $OH^- + H_2PO_4^- \leftrightarrow H_2O + HPO_4^{2-}$ (Strong base converted to weak base \therefore less effect on pH)

Control of [H⁺] - Buffers 3) Protein Buffers

Proteins among most plentiful buffers in body, particularly highly concentrated INTRACELLULARLY.

~ 60 - 70% of total chemical buffering of body fluids is located intracellularly, mostly due to intracellular proteins.

Carboxyl and amino groups on plasma proteins are effective buffers;
RCOOH ↔ RCOO⁻ + H⁺
RNH₃⁺ ↔ RNH₂ + H⁺

Control of [H⁺] - Buffers 3) Protein Buffers

 Most important non-bicarbonate buffering proteins are titratable groups on HAEMOGLOBIN (Hb also important for buffering CO₂).

 $CO_{2} + H_{2}O \Leftrightarrow H_{2}CO_{3} \Leftrightarrow H^{+} + HCO_{3}^{-}$ $(DeoxyHb \ a \ better \ buffer \ H^{+} + Hb^{-} \Leftrightarrow HHb$

PH of cells changes in proportion to pH of extracellular fluid – CO₂ can rapidly traverse cell membrane.

Control of [H⁺] - Buffers 4) Bone

- Probably involved in providing a degree of buffering (by ionic exchange) in most acid-base disorders.
- However, important source of buffer in CHRONIC metabolic acidosis (*i.e.* renal tubular acidosis & uraemic acidosis).
- CaCO₃ (base) is most important buffer released from bone during metabolic acidosis.
- Results in major depletion of skeletal mineral content (*e.g.* Chronic metabolic acidosis that occurs with renal tubule acidosis (RTA) can lead to development of Rickets / osteomalacia).

Control of [H⁺] - Buffers

Remember that all of these buffer systems work in TANDEM, <u>NOT</u> in isolation.

Buffers can only LIMIT CHANGES in pH, they cannot REVERSE them.

Once arterial pH has deviated from normal value, can only be returned to normal by RESPIRATORY or RENAL COMPENSATION.