Radiology Renal System

Objectives:

- Modality used for assessment of the urinary system
 - X-ray
 - □ US
 - Ct
 - MRI
 - Nuclear
- Normal anatomy
- Common pathologies
 - Kidney
 - Ureter
 - Bladder
 - Urethra

• US

- Pros: (no ionizing radiation, inexpensive, portable)
- Cons :(operator dependent, time consuming)

Image Key:

White = stones and calcification.

Grey = soft tissue.

Black = fluid.

• X rays

- Pros (inexpensive, quick)
- Cons (ionizing radiation, not definitive)

Image Key:

White = bone and calcification.

Grey = soft tissue.

Black = air.

IVP

• **CT**

- Pros (quick , a lot of information)
- Cons (ionizing radiation, expensive)

Image key:

White = bones and calcification.

Grey = soft tissue.

Black = air.

• MRI

- Pros (no ionizing radiation , a lot of information)
- Cons (expensive, time consuming)

Image key:
White = high intensity.
Grey to black = low intensity.

- Nuclear scans
 - Pros (assess the <u>function</u>)
 - Cons (time consuming, radioactive materials)

modality	US	X-ray	СТ	MRI	Nuclear
Pros	 No lonized radiation. Cheep. Portable. 	• Cheep. • Quick.	 Quick. Gives lots of information. 	 No lonized radiation. Gives lots of information. 	Assess the function.
Cons	 Operator dependent. Time consuming. 	 lonized radiation. Not defective. 	 Expensive. lonized radiation. 	 Expensive. Time consuming. 	 Time consuming. Radioactive materials.

Anatomy of the urinary system

Kidneys:

Gross Anatomy of Kidney

- · Renal Cortex.
- · Renal Permed or Medulla.
- · Hilum or Pelvis.
- Ureter

Urinary bladder

Urinary bladder

Urethra

- Bladder.
- Bladder neck.
- Prostatic urethra.
- · Membranous urethra.
- Bulbar urethra.
- Penile urethra.
- Urethral meatus.

Common Renal system Pathologies

• Cysts (benign, common)

ANECHOIC circular mass, clear borders

Hypo-dense clear border mass in right kidney

• Stones:

- Radio-opaque (calcium, struvite)
- Radio-lucent (uric acid, cysteine)

CT

The best modality for diagnosis of renal stones is non-contrast CT

Hydronephrosis

Pyelonephritis:

- is the infection of the kidney.
- Acute pyelonephritis results from bacterial invasion of the renal parenchyma. Bacteria usually reach the kidney by ascending from the lower urinary tract.
- CT scan for a patient with pyelonephritis, we do it only if the patient doesn't respond to the treatment or he had a recurrent pyelonephritis.

• ESRD

- Tumors:
 - Benign, most common benign is angiomyolipoma
 - Malignant, most common type is renal cell carcinoma

Congenital

Horseshoe Kidney

Ectopic Kidney

Polycystic Kidney Disease

Common <u>Ureter</u> Pathologies:

•Ureteric Stone:

stones in the ureter will make a obstruction and block the urines way to the bladder, which may cause Hydronephrosis.

Uretropelvic junction

Pelvic brim junction: intersection of iliac arteries and ureter

Common <u>Ureter</u> Pathologies

vesicoureteral reflux disease

Common <u>Urinary Bladder</u> Pathologies

Common urinary bladder pathologies

Cystitis:

- Image 1: an inflamed urinary bladder (thick surrounding walls)
- Image 2: This bladder has gas bubbles that could be due to inflammation or infection from 'gas producing' bacteria.

Benign Prostate Hypertrophy

Common <u>Urinary Bladder</u> Pathologies

• Bladder rupture:

- The abdomen is lined with the peritoneum from inside.
- The bladder is located below the membrane of the peritoneum.

Common urinary bladder pathologies

Extra peritoneum: any rupture or leakage to the content of the bladder does not enter the peritoneum. Patient does not need surgery.

Intra peritoneum: there is a rupture in both bladder and peritoneum. In this case, patient will need surgery.

