

Physiology Team 436 Renal Block

Values and Equations File

Color Index:

Equation

Number

Unit

Notes

Only female slides

Only males slide

Both female and males slides

Done by:

Rana Barasain - Laila Mathkour

دعواتكم لنا بالتوفيق

Lectures:

Renal Functions, GFR, Clearance, Micturition, Acid base balance, Buffer systems.

```
THIS IS THE MAIN EQUATION: Clearance = U . V / P
GFR: we use creatinine
125 ml/min or 180 L/day
                                                                                                          ml/min
RPF: we use PAH because it is completely secreted.
Renal blood flow = RPF / 1 - hematocrit (the high RBF is a feature of renal circulation)
  (around 1200) = 625 / (1 - 0.45)
(20% of cardiac output is renal blood flow, and 20% of renal plasma flow will be filtered)
Filtration Fraction = GFR / Renal plasma flow (no unit)
              0.2 = 125 / 625
Amount of substance excreted = filtration rate +- tubular handling
                                (filtered – reabsorbed + secreted)
U.V (EXCRETION RATE) = C.P (FILTERED)
Reabsorption = Filtered load (C.P) - Excretion rate (U.V)
Secretion rate = Excretion rate - Filtration load
             K \times (140 - age) \times Body weight (kg)
GFR =
                                                  (this is the Cockcroft-Gault equation for clearance)
             Serum creatinine (µmol/L)
                                                  K = 1.23 for males 1.04 for females
GFR = Kf x net filtration pressure
125 = 12.5 \times 10
GFR = Kf x [(PG-PB)-(\piG-\piB)
                                P = Hydrostatic \pi = Colloid
Net filtration pressure = Glomerular hydrostatic - Glomerular colloid - Bowman's hydrostatic (mmHg)
                    10 = 60 - 32 - 18
CONVERSION IN BIOCHEMISTRY: 1 mg/dl = 88.4 micro mol / l
Laplace Law: P = 2T / r
Acid [AH] \leftrightarrow conjugate base [A-] + [H+]
Dissociation constant: K = [H+] \times [A-]
                              [AH]
pH = - Log [H+]
pH = pK + Log ____HCO3-___
                                 pK = dissociation constant = 6.1
                                            (Dr.Maha said we don't need to know the steps that lead up to it)
                0.03 x PCO2
```

Lecture #1 Renal functions & GFR

KIDNEYS weight	150 grams
Each kidney has	1 million nephrons
Blood flows through juxta medullary nephrons	1-2 %
Renal blood flow to the kidney represents	20% of cardiac output
Blood flow rate of renal circulation	1200 ml/min
GFR	125 ml/min = 20% renal plasma flow.
Glomerular hydrostatic pressure	60 mmHg
Hydrostatic pressure in bowman's capsule	18 mmHg
Colloid osmotic pressure of glomerular plasma proteins	32 mmHg
Net filtration pressure	60-18-32= 10 mmHg
Kidney filter	200 liters of blood daily

Lecture #2 Regulation of GFR

The volume of filtrate produced by both kidneys per min	Averages 125 ml/min Totals about 180L/day (45 gallons)
GFR remains constant over a large range of values of BP	75-160 mmHg
systemic cardiac output flows through the kidneys each minute	1200 ml
plasma entering the glomerulus is filtered	20%
filtered fluid	125 ml/min
Sodium reabsorption of filtered sodium is absorbed	 99.5% Proximal tubules (67%) Loop of Henle (25%) Distal/Collectin g tubules (8%)
Forces in capillaries: hydrostatic pressure PGC	60mmHg
oncotic pressure GC	- 29 mmHg

Lecture #2 Regulation of GFR

Net outward pressure	60 - 29 = 31mmHg
Forces in capsule: hydrostatic pressure PBS	-15mmHg
oncotic pressure GBS	0 mmHg
Overall	31 – 15 = 16 mmHg outward
Male adults GFR	~ 90 – 140 ml/min
Female GFR	80 – 125 ml/min

Lecture #3 Renal clearance

Tm for Glucose	60 – 29 = 31mmHg	
[Inulin]urine	= 30 mg/ml	
[Inulin]plasma	= 0.5 mg/ml	
urine flow rate	= 2 ml/min	

Lecture #4 Physiology of micturition

A nervous reflex called the micturition reflex occurs that empties the bladder at	150-200mls of urine volume		
[Inulin]urine	= 30 mg/ml		
[Inulin]plasma	= 0.5 mg/ml		
urine flow rate	= 2 ml/min		
urge to void urine	150-300 ml		
sense of fullness of U.B	300-400 ml		
sense of discomfort	400-600 ml		
sense of pain	600-700 ml		
micturition can't be suppressed	700 ml		

Lecture #5+6 Renal Transport Process

Reabsorped daily by renal tubules	25,000 mEq/day Na+ 179 L/day water	
Normal plasma level of urea	2.5-6.5 mM/L (15- 39 mg/100ml)	
Potassium in blood	3,500-4,000 mmol 98 % is intracellular, [150mM] 2% K extra-cellular [3.5-5mM]	
K+ Intake	80-120 mmol/day	
K content of average meal	30-40mmol	
Dietary K excreted via the kidneys	90-95%	
K in Sweat & Feces (This is unregulated and may become significant in diarrheas)	5-10%	
Filtered load of potassium	720 mmol/day	

Lecture #8 Urine Concentration Mechanism

diluting tubule fluid	150 mOsm/kg water
Water reabsorption %	65% in Proximal convoluted tubule 20-25% in Thin Descending limb ZERO in thick and thin Ascending limb
Osmolality of medullary tissue high up to	1200 mOsm/kg
Bu medullary blood flow	less than 5%

Lecture #9 Basics acid base

pH of water	7
Normal pH	-log [0.0000004] M=7.4
ECF [Na+]	145 mM/L
Normal BLOOD pH	7.35 – 7.45
pH range Compatible with human life	(6.8-7.8)

Lecture #10 Buffer system

total chemical buffering of body fluids	60 - 70%
HCO3 - FREELY FILTERABLE at glomeruli	(3 mM/min)
Maximum urine acidity	pH 4.5 \Rightarrow equates to urine [H+] of only \sim 0.03 mM/L.

Lecture #11acid base disorder

Respiratory Acidosis	ACUTELY I mEq/L [HCO3-] per 10 mm Hg ↑ in Pco2 CHRONICALLY 3.5 mEq/L [HCO3-] per 10 mm Hg ↑ in Pco2
----------------------	---

How to Analyze an ABG

	PO2	рН	PCO2	HCO3
normal	80-100mmHg	7.35_7.45	35-45 mmHg	22-26 mmol/L
acidotic	-	<7.35	>45	< 22
alkalotic	-	>7.45	<35	> 26

YOU ARE DONE!

إن أصبنا فهو من الله سبحانه، وإن أخطأنا فهو منا ومن الشيطان، وجل من لا يخطأ.

لا تنسون قول: اللهم إني استودعتك ماحفظت وماقرأت وماتعلمت فرده لي وقت حاجتي إليه، إنك على كل شيء قدير.

Good luck our DOCTORS!

See you next year!

Physiology Team 436