AUTACOIDS

AUTACOIDS

ILOS

To describe the synthesis, receptors & functions of histamine, eicosanoids, nitric oxide, angiotensin, kinins & 5-HT

To study the agents which enhance or block their effects.

1 - Histamine

HISTAMINE

Synthesis:- from L- histidine

Stored in mast cells, basophils, lung, intestinal mucosa

Release:- during allergic reaction, inflammatory reaction

HISTAMINE RECEPTORS

Receptor Type	Major Tissue Locations	Major Biologic Effects
H ₁	Smooth muscle, Endothelial cells, Brain	Acute allergic responses
\mathbf{H}_2	Gastric parietal cells, Cardiac muscle, Mast cells, Brain	Secretion of gastric acid & increase in *COP
\mathbf{H}_3	Central nervous system	Neurotransmission
$\mathbf{H_4}$	Mast cells, Eosinophils, T-cells	Regulating immune responses
		* COP: cardiac output

ACTIONS

Histamine stimulates gastric acid secretion, through H₂- receptors

#Stimulation of H₁receptors <u>contract</u> smooth
muscles, bronchioles,
uterus

Increases bowel peristalsis

ACTIONS OF HISTAMINE

Slow IV or SC injection causes flushing of skin, raise temperature, edema, increase blood flow to the periphery, increase heart rate & COP (through increasing Ca²⁺ influx)

Rapid IV bolus injection induces a fall in blood pressure, an increase in CSF pressure, headache, due to dilation of blood vessels

Intradermal injection causes itching.

HISTAMINE RECEPTOR BLOCKERS

Physiological antagonist: epinephrine

HISTAMINE H1 RECEPTOR ANTAGONISTS:

First generation

Diphenhydramine, Promethazine

Second generation

Cetirizine, Fexofenadine.

HISTAMINE H1 RECEPTOR BLOCKERS

First generation

Has a sedating effect

Clinical uses:

4 Urticaria

4 Motion sickness

Urticaria

HISTAMINE H1 RECEPTOR BLOCKERS

Second generation

♣ Non-sedating effect

Clinical uses

Allergic conditions such as:-

- Allergic rhinitis
- Conjunctivitis
- Urticaria.

H2- RECEPTOR BLOCKERS

Histamine plays an important role in the formation & secretion of HCl by the activity of H2 receptors

e.g. Cimetidine

Blockers of H2 receptors inhibit gastric acid secretion

Used for treatment of:

- Gastritis
- Peptic ulcers

H3-RECEPTOR BLOCKERS

e.g. Betahistine

It produces dilatation of blood vessels in inner ear

Used in treatment of:

Vertigo of Ménière's disease & other balance disturbances of vestibular origin

Side effects:

May produce headache & insomnia.

2- Eicosanoids

EICOSANOIDS

SYNTHESIS

COX ISOZYMES

ACTIONS OF PROSTAGLANDINS

They are pro-inflammatory

Cause vasodilatation of vascular smooth muscle

Inhibition of platelets aggregation (high PG conc) / increase platelet aggregation (low PG conc)

Sensitize neurons to cause pain

Induce labor.

abnormal pressu

ACTIONS OF PROSTAGLANDINS domage to optic nerve

Acts on k filtration

Acts on parietal cells of stomach to protect gastric mucosa.

ular

PROSTACYCLIN VERSUS THROMBOXANE

vasodilatation

platelets arachidonic acids vessel wall COX cyclic endoperoxides (PGG2, PGH2) prostacyclin synthetase thromboxane synthetase PROSTACYCLIN THROMBOXANE antiaggregating efect aggregagating efect

vasoconstriction

CLINICAL USES OF PGS ANALOGS

Carboprost (PGF): Induce abortion in first trimester

Latanoprost (PGF): Glaucoma

Misoprostol (PGE1): Peptic ulcer

Alprostadil (PGE1): Erectile dysfunction

Zileuton (lipoxygenase inhibitor): Asthma

Zafirlukast (leukotriene receptor blocker): Bronchial asthma.

3- Nitric oxide

NITRIC OXIDE

ISOFORMS OF NOS

Neuronal NOS (nNOS)

- Neurons
- · Skeletal muscle

Endothelial NOS (eNOS)

- Endothelium
- Cardiac myocytes
- Osteoblasts
- Osteoclasts

Inducible NOS (iNOS)

- Macrophages
- · Kupffer cells
- Neutrophils
- Fibroblasts
- Vascular smooth muscle

Constitutive Forms (Physiological)

Pathological

NO MECHANISM OF ACTION

Combining with haem in guanylate cyclase, activating the enzyme, increasing cGMP & thereby lowering [Ca²⁺]_i

ACTIONS OF NO

Inhibition of platelet & monocyte adhesion & aggregation

Inhibition of smooth muscle proliferation

ACTIONS OF NOS

nNOS

- Long Term Potentiation
- Cardiac function, Peristalsis, Sexual arousal

eNOS

- Vascular tone, Insulin secretion, Airway tone, Regulation of cardiac function and angiogenesis
- Embryonic heart development

iNOS

- In response to attack by parasites, bacterial infection and tumor growth
- Causes septic shock, autoimmune conditions

NO IN THERAPEUTICS

NO donors have well established therapeutic uses e.g. in hypertension & angina pectoris

Overproduction of NO occurs diseases (e.g. Parkinsonism)

NO is used in patients with rifailure secondary to pulmona

Sildenafil potentiates the action of NO on corpora cavernosa smooth muscle. It is used to treat erectile dysfunction.

4- Angiotensin

ANGIOTENSIN

Biosynthesis

Renin released from the kidney converts angiotensinogen to Ag I

ACE converts Ag I to Ag II

ACTIONS OF ANGIOTENSIN II

Promotes vasoconstriction directly or indirectly by releasing NA & AD

Increases force of contraction of the heart by promoting Ca²⁺ influx

♣Increases aldosterone release → sodium & water retention

+Causes hypertrophy of vascular & cardiac cells & increases synthesis & deposition of collagen by cardiac fibroblasts (remodeling).

ANGIOTENSIN INHIBITORS

ACE inhibitors: e.g. Captopril

Angiotensin receptor blockers (ARBs): e.g. Losartan.

"No, taking an ACE inhibitor won't hurt your poker game."

ACE INHIBITORS

Cause a fall in blood pressure in hypertensive patients especially those with high rennin levels

CLINICAL USES:

Hypertension

Cardiac failure

Following myocardial infarction.

ANGIOTENSIN RECEPTOR BLOCKERS

Angiotensin receptors AT₁ & AT₂

AT₁ receptors predominate in vascular smooth muscle, mediate most of the known actions of Ang, coupled to G proteins & DAG

Similar uses to ACEI

5 – Kinins

KININS

Are Bradykinin & kallidin

Bradykinin is formed by proteolytic cleavage of circulating proteins (kininogens)

ACTIONS OF BRADYKININ

Causes pain, this effect is potentiated by PG. Has a role in inflammation

secretion in airways & GIT.

RECEPTORS & CLINICAL USES

- ♣Receptors B₁ & B₂ (both are G protein-coupled receptors)
- **4B1** inducible under condition of inflammation
- ♣B₁ receptor has low affinity to bradykinin
- #plays a significant role in inflammation & hyperalgesia
- **4B2** constitutive
- High affinity to bradykinin & mediates the majority of its effects.

THERAPEUTIC USES

No current therapeutic use of bradykinin

4Increased

bradykinin is implicated in the therapeutic efficacy & cough produced by ACEIs.

6- Serotonin

SEROTONIN [5HT]

Serotonin is synthesized from the amino acid L-tryptophan

SEROTONIN [5-HT]

DISTRIBUTION

1] Intestinal wall: in chromaffin cells, in neuronal cells in the myenteric plexus

2] Blood, in platelets, released when aggregated, in sites of tissue damage

3] CNS: a neurotransmitter, in midbrain

5-HT

RECEPTORS

ACTIONS OF 5-HT

GIT: 5-HT increases motility

Contracts uterus, bronchiole, other smooth muscles

Blood vessels

Contracts large vessels by a direct action & relaxes other vessels by releasing NO

Increases capillary pressure & permeability.

5-HT ACTIONS

Platelets:- causes aggregation, aggregated platelets release 5-HT

↓Neuronal terminals: 5-HT stimulates nociceptive neuron endings → pain

#CNS;-stimulates some neurons & inhibits others, inhibits release of other neurotransmitters.

5-HT RECEPTOR AGONISTS

Buspirone: 5-HT_{1A} agonist, effective anxiolytic

4Cisapride:-

5-HT₄ -receptor agonist, used in gastroesophageal reflux & motility disorders.

5-HT RECEPTOR ANTAGONISTS

4Selective 5-HT3 antagonist, Ondansetron,antiemetic action,
for cancer
chemotherapy

CLINICAL CONDITIONS IN WHICH 5-HT IS IMPLICATED

1-MIGRAINE

SUMATRIPTAN

5-HT 1B, 1D & 1F-receptor agonists, effective in acute migraine attack

It binds to 5HT1B, in cranial blood vessels causing vasoconstriction & 1D & 1F in presynaptic trigeminal nerve causing inhibition of pro- inflammatory neuropeptide release.

2-CARCINOID SYNDROME

- A malignant tumor of intestinal chromaffin cells
- ↓The tumor releases 5-HT, SP, PGs, kinins & histamine causing flushing, diarrhea, bronchoconstriction & hypotension
- **4**Serotonin antagonists (**cyproheptadine**, 5HT₂ antagonist) could be administered to control diarrhea, flushing & malabsorption.

