Dr. Maha Saja

Physiology department, Level 2, Office 89, Email: msaja@ksu.edu.sa

Objectives

- Define edema and describe its different types.
- Discuss and describe the Starling forces governing fluid exchange across capillary walls.
- Link changes in hydrostatic and osmotic pressures to the pathogenesis of edema.

Study source for this lecture:

(Guyton & Hall Textbook of Medical Physiology, 13th ed, pages: 316-320 & 191-201)

- What is "edema"?
 - Edema = swelling
 - The presence of abnormally large amounts of fluid in the intercellular tissue spaces of the body.

Types of Edema

Edema occurs mainly in the ECF compartment, but it can involve the ICF compartment as well.

Extracellular Edema

- Extracellular edema = the abnormal accumulation of fluid in intercellular tissue space (i.e. interstitial space).
- Normally, fluid is constantly moving in & out of the interstitial space to allow ECF to distribute between plasma and IF.
- This process happens without fluid accumulating between the cells.
- What happens to cause fluid to accumulate between the cells leading to edema?
- To understand EC edema one must first understand how fluid exchange occurs between capillaries and tissue cells.

Fluid Exchange Between Blood & Interstitial Fluid

Fluid Exchange Between Blood & Interstitial Fluid

- Fluid exchange between blood and tissue cells occurs at the level of the capillaries.
- The capillaries are the smallest blood vessels in our vascular tree.
- These vessels are very small and have a very thin wall allowing easy exchange of fluid across the walls.

Fluid Filtration Across Capillaries

In simple words!

As blood passes through capillaries

How does this process happen? OR What are the mechanisms controlling fluid exchange across capillaries?

Factors Controlling Fluid Filtration Across Capillary Walls

Movement of fluids across capillary walls depends on the balance of starling forces acting across the capillary wall.

What are starling forces?

Starling Forces

Starling Forces Acting Across Capillary Membrane

- Four primary forces determine whether fluid moves in or out of blood "Starling forces":
 - Capillary "*hydrostatic*" pressure \rightarrow out of blood.
 - − IF "*hydrostatic*" pressure \rightarrow into blood.
 - − Plasma *colloid osmotic* pressure \rightarrow into blood.
 - − IF *colloid osmotic* pressure \rightarrow out of blood.

Starling Forces Acting Across Capillary Membrane

- Capillary *hydrostatic pressure (Pc)*:
 - Arterial end = 30 mmHg
 - Venous end = 10 mmHg (usually 15-25 mmHg less than arterial end).
- IF *hydrostatic pressure (Pif)* is usually subatmospheric in loose connective tissue (≈ -3 mmHg).
- Plasma *colloid osmotic pressure* (π_p) = 28 mmHg.
- IF *colloid osmotic pressure* (π *if*) = 8 mmHg.

Forces that Determine Fluid Movement through Capillary Membrane

The Lymphatic System

The reabsorption pressure causes 9/10 of the filtered fluid to be reabsorbed while 1/10th remains in the IF.. What happens to this 1/10th?

The total quantity of lymph ≈ 2-3L/day.

Summary

- Edema = excessive accumulation of fluids in the EC space.
- Two main reasons:
 - 1. Abnormal leakage of fluid from plasma to interstitial space.
 - 2. Failure of lymphatic uptake.

Increase capillary filtration

1. Increased capillary pressure

- Kidney failure
- Heart failure.
- Venous obstruction

2. Decreased plasma oncotic pressure

- Loss of proteins (nephrotic syndrome, burns).
- Inability to synthesize proteins (liver failure, malnutrition).

3. Increased capillary permeability

- Inflammation
- Infection.
- Immune reactions.

Decrease lymph uptake

Lymphatic obstruction

- Infection (filaria).
- Surgery.
- Congenital absence.
- Cancer.

STSTEN

