

Major Metabolic Pathways of Glucose and Glucose Transporution of Glucose and Glucose and Glucose Transporution of Glucose and Glucose

Color index: Doctors slides Extra information

Objectives:

Define a metabolic pathway.
 Describe the general metabolic pathways for glucose (production and utilization)
 Briefly describe the HMP
 Recognize the mechanisms of glucose transport

Metabolic pathways

Pathway: Series of chemical reactions that have one goal. Reaction: Substrate+Substrate = Product.

Glycolysis

*Aerobic: with oxygen*Anaerobic: without oxygen

• Oxidation (breaking down) of glucose to provide energy.

The kind of glycolysis	Aerobic glycolysis	Anaerobic glycolysis
When	If there is enough(adequate supply) oxygen, Cells that has mitochondria	In absence of oxygen , cells that lack mitochondria
The end product	Pyruvate(s) + 8ATP	Lactate + 2 ATP

Glycogenesis and Glycogenolysis Glycogenesis

- Synthesis of glycogen from glucose .
- Occurs when glucose and ATP are present in relatively high amounts (This process is: storage)

(اذا زاد الجلوكوز في الجسم و كانت الطاقة موجودة يتم تخزين الجلوكوز على شكل جلايكوجين عشان يحرقه و يستخدمه بعدين)

- Degradation (تکسیر) of glycogen into glucose
- Occurs in response to hormonal and neural signals

هرمونات او إشـارات كهربائية (اذا احتاج الجسـم جلوكوز يرسـل إشـارات للجلايكوجين لكي يتحول)

Both the same location: Mainly in liver and muscle → Cytosol

Glucose	Glycogenolysis	
		Glycogen
	Glycogenesis	

Gluconeogenesis

• Synthesis of glucose from non-carbohydrate precursors.

- The precursors could be lactate(Anaerobic), pyruvate(Aerobic), glycerol and alpha-keto acids.
- It requires both mitochondria and cytosolic enzymes.

• It occurs in Liver and kidney.

Glycerol: is a part of the triacylglycerol molecule which is the main constituent of body fat.

Keto acids: are organic compounds that contain a carboxylic acid group and a ketone group. The alpha-keto acids are especially important in biology as they are involved in the Krebs citric acid cycle and in glycolysis.

cytosolic enzymes: present in cytosol

Hexose Monophosphate shunt (HMP) or Pentose Phosphate Pathway (PPP)

• HMP shunt is an alternative pathway of <u>glucose oxidation</u>.

- It is **not** involved in the generation of energy.
- Around 10% of glucose is entered in this pathway.
- In liver and kidney, this percentage is up to **30%**.

PPP is a <u>metabolic pathway</u> parallel to glycolysis.

Biomedical Importance of HMP

- It has two main functions:
- 1. Provides **NADPH** which is required for:
 - synthesis of fatty acids, steroids and some amino acids
 - Detoxification of drugs by Cytochrome P450. -
 - In scavenging the free radicals.
- 2. Provides Pentoses, e.g. ribose
 - This pentose and its derivatives are useful in the synthesis of:
 - Nucleic acids (DNA and RNA)
 - Nucleotides (ATP, NAD, FAD and CoA)

Tissue Distribution of HMP

- > in the Cytosol of the following locations:
- Liver
- Lactating mammary gland
- Adrenal cortex
- Gonads

- Adipose tissue
- Erythrocytes (RBC) <u>to reduce</u> <u>glutathione</u>
- Lens and cornea

Note: Cytochrome P450: enzymes also function to metabolize potentially toxic compounds, including drugs and products of endogenous metabolism such as bilirubin

Phases of HMP Shunt

- It has two phases:
 - 1. Oxidative phase (**irreversible**)
 - 2. Non-oxidative phase (**reversible**)

There are two distinct phases in the pathway. The first is the oxidative phase, in which <u>NADPH</u> is generated, and the second is the non-oxidative <u>synthesis of 5-carbon sugars</u>.

important : Enzymes numbered above are: 1, 2) glucose 6-phosphate dehydrogenase and 6-phosphogluconolactone hydrolase, 3) 6-phosphogluconate dehydrogenase, 4) ribose 5-phosphate isomerase, 5) phosphopentose epimerase, 6 and 8) transketolase (coenzyme: thiamine pyrophosphate), and 7) transaldolase.

PHASE 1- OXIDATIVE PATHWAY

Phase 2- Non-oxidative a) Interconversion of pentoses

STAGE-2(non-oxidative phase) a)INTERCONVERSION OF PENTOSES

Phase 2- Non-oxidative

D-Ribulose-5-P Phosphopentose Epimerase

D-Xylulose-5-Phosphate

Phase 2- Non-oxidative a) Conversion of pentose phosphate to hexose phosphates

2)TRANSALDOLASE

Transketolation

1) Xylulose-5-P+Ribose-5-P
 Transketolase
 TPP
 Sedoheptolose 7-Phosphate +

Glyceraldehyde-3-Phosphate

Transaldolation

Glyceraldehyde 3-P.

Glycolysis

Clinical Correlations

G-6-PD deficiency results in: > Heamolytic Aneamia

Neonatal Jaundice

Kidney failure

Med4 36

Glucose-6-phosphate dehydrogenase deficiency The condition is characterized by abnormally low levels of glucose-6-phosphate dehydrogenase, an enzyme involved in the pentose phosphate pathway that is especially important in the red blood cell. G6PD deficiency is the most common human enzyme defect **Hemolytic anemia**: relating to or involving the rupture or destruction of red blood cells. **Neonata**: relating to newborn children

Source-wordpress.com

Glucose Transport

Na+-Monosaccharide
Cotransporter: active
transportNa+-Independent
Facilitated Diffusion:

- Against concentration gradient (SGLT-1.2)
- Energy dependent
- Carrier-mediatedCoupled to Na+
 - transport
- Small intestine, renal tubules & choroid plexus(blood brain barrir).

- Down the concentration gradient
- EnergyIndependent
- Glucose
 Transporters (GLUT 1-14)

Glucose Transport: Facilitated Diffusion

Glucose Transporters

• Tissue-specific expression pattern

GLUT-1	RBCs and brain
GLUT-2	Liver, kidney & pancreas
GLUT-3	Neurons
GLUT-4	Adipose tissue & skeletal
	muscle
GLUT-5	Small intestine & testes

GLUT-7 Liver (ER-membrane)

• Functions:

GLUT-1, 3 & 4 Glucose uptake from bloodGLUT-2Blood & cells (either direction)GLUT-5Fructose transport

Take home messages

- There are multiple pathways for glucose that can be grouped in to catabolic (utilizing glucose) or anabolic (producing glucose)
- Glycolysis is the major metabolic pathway of glucose breakdown to provide energy
- Alternative pathway for glucose oxidation but not meant for producing energy
- Has two phases- oxidative and non-oxidative
- During oxidative phase, glucose-6-P is oxidized with generation of 2 moles of NADPH, and one mole of pentose phosphate, with liberation of CO2
- During non-oxidative phase, pentose phosphate is converted to intermediates of glycolysis

1- Phases of HMP Shunt

- A-Oxidative phase and substrate-Level
- B-Non-Oxidative phase and substrate-Level
- C-Oxidative phase and Non-Oxidative

D-None

2- What is the main function of HMP ?

A- produce energy

B- Provides NADPH

C- Provides Pentoses

D- B & C

3- NADPH is required synthesis of

A- synthesis of fattyacids, steroid and some amino acids

B- In scavenging the free radicals

C- synthesis of Nucleic acids

D- A & B

4- what is the function of GLUT-!

- A- Fructose transport
- B- Uptake of glucose from the blood
- C- Allowing glucose to flow in 2 directions
- D- All of above

GIRLS TEAM: الهنوف الجلعود • رهف الشنيببر • شهد الجبرين • لينا الرحمة • منيرة المسعد • العنود المنصور • أرجوانة العقيل • مجد البراك •

روان مشعل

BOYS TEAM: ١- محمد صالح القسومي ۲ -نواف عبدالعزيز ۳ -عبدالملك الشرهان ٤ -صالح المعيقل

Team leaders: محمد حسن حکيم- ۱ ر هام الحلبي -۲

Contact us: teambiochem437@gmail.com

For editing file:

https://docs.google.com/prese ntation/d/16yNcm2Y08Cr0Am8 3IDRfH5NB4F1ng3tdHiB3O1A qMc8