

يسم الله الرحمن الرحيم

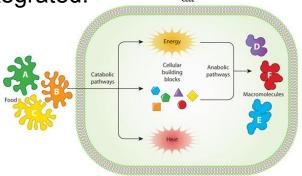
Biochemistry Team 437

Metabolism: anabolism and catabolism

Color index: Doctors slides Notes and explanations Extra information

Objectives:

- Understand the concept of metabolic pathway
- Identify types and characters of metabolic pathways- anabolic and catabolic
- Identify ATP as the energy currency of cells


Metabolism:

METABOLISM is all the chemical reactions taking place inside a cell.

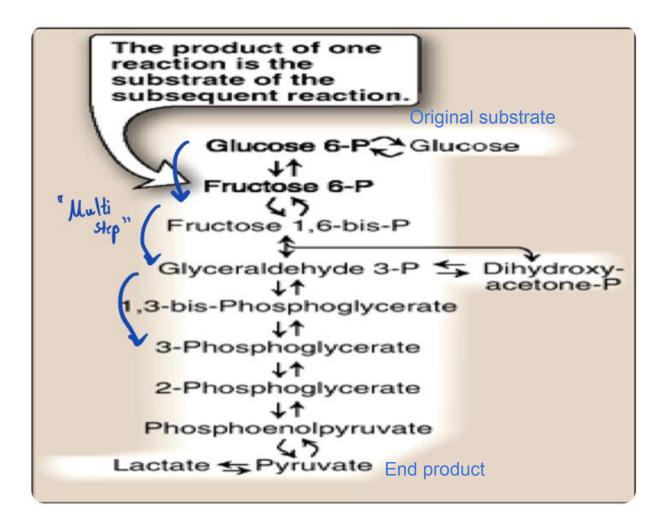
A metabolic pathway is a multistep sequences of enzyme-catalyzed reactions. > Metabolic pathways are tightly regulated and highly integrated.

Consists of (classified as):

1- Anabolism (anabolic pathway) بناءة (بناءة

2- Catabolism (catabolic pathway) هدامة

Pathways that regenerate a component are called **cycles**.

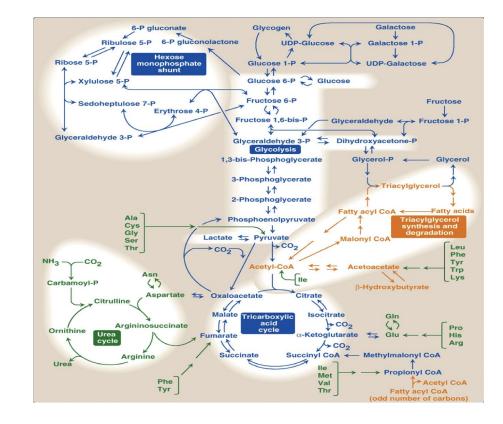

Pathway Vs Chemical reaction

Metabolic pathways:

- A multi-step sequence of chemical reactions.
- A <u>product</u> of first reaction becomes a <u>substrate</u> for second reaction.
- Integrated (not separated) pathways.

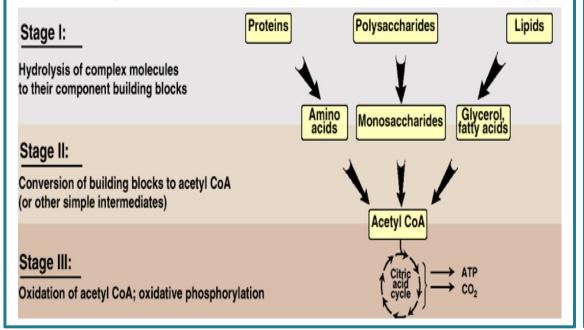
Metabolic pathways are bidirectional.

An example of a metabolic pathway (Glycolysis):



Metabolic Map

Different pathways can intersect, forming an integrated and purposeful network of chemical reactions The Metabolic Map.


> The metabolic map shows how all pathways come together, it helps us understand the effect of each path on the entire metabolism.

Example: (الصورة للفهم فقط)

Catabolic Pathways

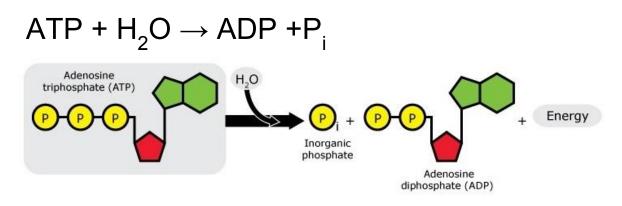
Breaking down complex molecules to produce energy

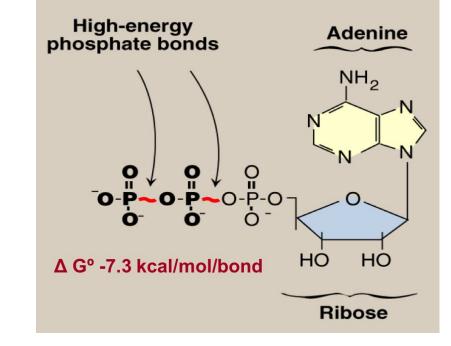
Anabolic Pathways

-Use ATP produced by catabolic pathways -Monomers + Energy (ATP) = Polymers

- Precursor molecules into complex molecules
- Endergonic reactions require ATP
- Divergent process
 Starts with a small number of molecules and keeps on increasing

Amphibolic Pathways


- Amphi = Dual, amphibolic: dual pathway (both catabolic and anabolic)
- For example: Krebs cycle is mainly a catabolic cycle, but with some anabolic features, e.g., part of Krebs cycle is used for the synthesis of glucose from amino acids

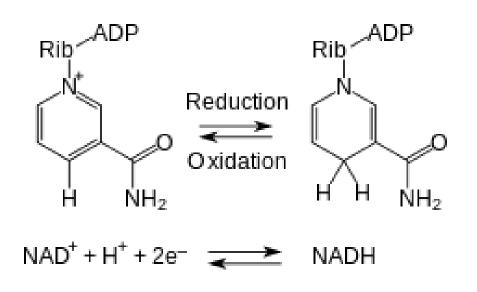

Therefore, Krebs cycle is **amphibolic**

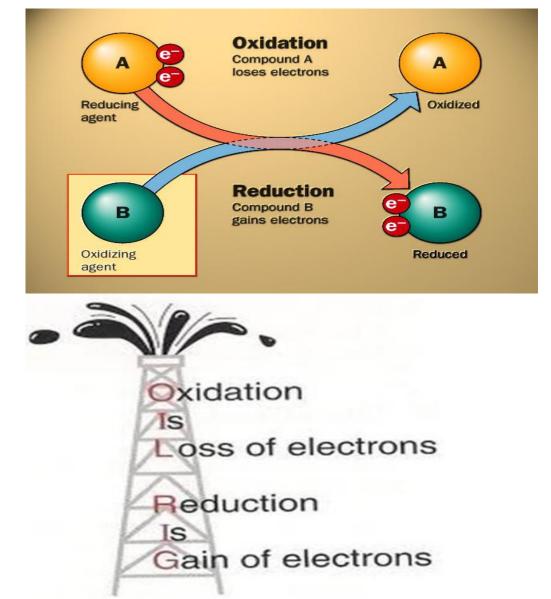
Catabolism Vs Anabolism

Catabolic	Anabolic		Energy-yielding nutrients	1	Complex molecules		
			Carbohydrates Fats		Proteins Polysacchari Lipids	des	
Complex to simple molecules	Simple to complex molecules	Convergir Makes	Proteins	Chemica energy ATP NADH		Uses ATP	
Exergonic	Endergonic	ATP			BOL	Diverging	
(energy producing) (provides energy in form of ATP)	(energy consuming)		Energy-poor end products		Precurson molecules	6	
Involves oxidations	Involves reductions		CO ₂ H ₂ O NH ₃		Sugars Fatty acids Nitrogenou bases		
			CATABOLISM	CATABOLISM		ANABOLISM	
Requires NAD ⁺	Requires NADPH		3660			ENERGY	
Convergent process	Divergent process			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		0	
					394	~	

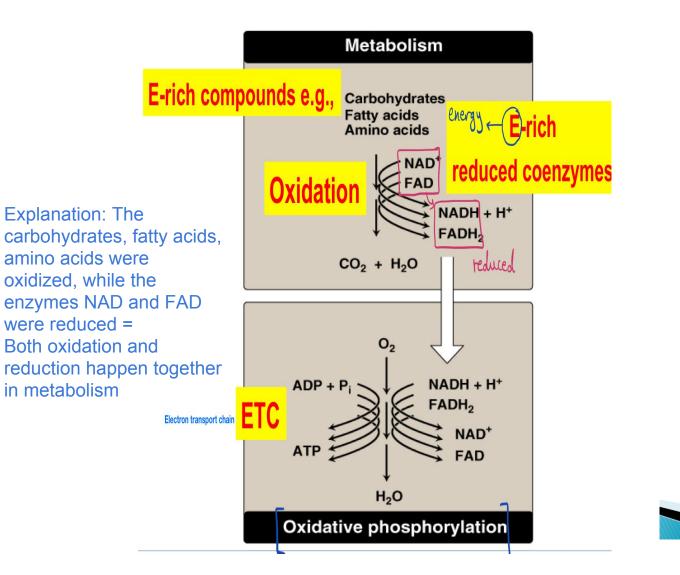
Energy Currency: ATP

© The University of Walkato I www.sciencelearn.org.nz

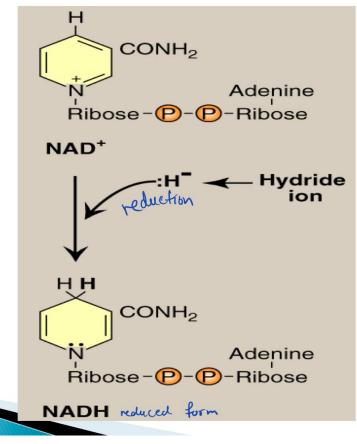

- The free energy liberated in the hydrolysis of ATP is used to drive the endergonic reactions
- ATP is formed from ADP and P_i when fuel molecules are oxidized
- This ATP-ADP cycle is the fundamental mode of energy exchange in biological systems
- ATP is the energy currency of the cells


Oxidation and Reduction

Oxidation: Loss of hydrogen - Loss of electrons Reduction: Gain of hydrogen - Gain of electrons


NAD+ and NADH "NAD= Nicotinamide Adenine Dinucleotide"

From NADH to NAD+ (oxidation) "loss of hydrogen" From NAD+ to NADH (reduction) "gain of hydrogen"



Oxidation and reduction are present in metabolism

NAD⁺/ NADH

Regulation Of Metabolism

regulating enzymes.

We regulate

metabolism by

We need signals to control metabolism, these signals could be:

Intracellular signals (inside cells): this kind of regulation is fast

- Substrate availability

(If substrate needed is not available > it won't activate If substrate needed is available > it will activate and make product)

- Product inhibition

(Feedback inhibition happens when the end product of a metabolic pathway exceeds its concentration limit, it inhibits the regulatory enzyme to normalize the pathway *-output used as input-*)

Allosteric activators or inhibitors

(Happens when an effector molecule binds at the protein's allosteric site *-which is a site other than the active site-* and that can either activate or inhibit the process)

Intercellular communications (between cells):

- Chemical signaling (hormones: first messenger)
- Second messengers: (cAMP, cGMP, Ca++/phosphatidylinositol)
 *c means cyclic

Explanation:

A hormone binds to a receptor <u>outside</u> the cell, leading to the activation of cell messengers <u>inside</u> the cell.

Some notes in this slide were taken from teams 435 & 436

Metabolic Fuel

Carbohydrates & lipids (mainly) and proteins (little extent) are used for energy production.

- 1- Carbohydrates (glucose)
- 2- Lipids (fatty acids)
- 3- Protein (amino acids)

Glucose is the major metabolic fuel of most tissues

GIRLS TEAM:

- الهنوف الجلعود
- ر هف الشنيببر
- شهد الجبرين
- لينا الرحمة
- منيرة المسعد •
- ليلى المتباغ
- العنود المنصور
- أرجوانة العقيل •
- ريناد الغريبي
- مجد البراك
- روان المشعل •

BOYS TEAM:

- داوود اسماعیل
- عبدالله الحربي
- عبدالملك الشرهان
- ٤ تركي آل بنهار
- احمد ابر اهيم العريفي
 - سعید آل سر ار
 - عبدالرحمن التركي
 - سلطان بن عبید
 - صالح المعيقل
 - صالح الوكيل
 - عدنان المقبل
 - علي العماري
 - محمد ابر اهیم
- محمد صالح القسومي
 - نواف عبدالعزيز

Team leaders: 1- Mohammed hassan hakeem 2- Reham alhalabi

Contact us: teambiochem437@gmail.com

For editing file:

https://docs.google.com/presen tation/d/16yNcm2Y08Cr0Am83 IDRfH5NB4F1ng3tdHiB3O1Aq Mc8