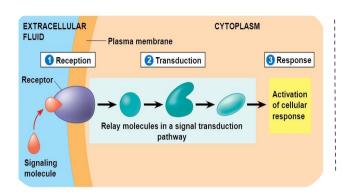


Receptor families

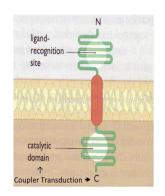
Objectives:

- Classify receptors into their main superfamilies.
- Recognize their different transduction mechanisms.
- Identify the nature & time frame of their respons.



1- Recognition

2- Reception


3- Transduction

4- Response

A Receptor structure:

- Ligand recognition site
- Inner catalytic domain

Receptor families

Type I

(Ion Channel-Link ed receptors)

Type II

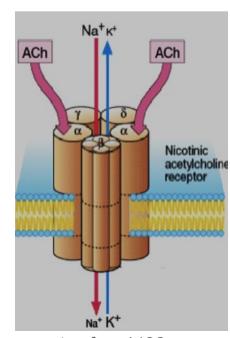
(G-Protein coupled receptors)

Type III

(Enzyme-Linked receptors)

Type IV

(Receptors linked to gene transcription)


(Nuclear receptors)

*type 1,2 and 3 are surface receptors. Type 4 is intracellular receptor

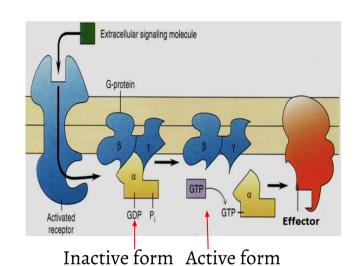
Type I: ion channel-linked receptor (ligand gated ion channel)-(ionotropic receptor)

- Located at cell membrane (as it's on the cell membrane, it doesn't require to be lipid soluble).
- Directly activated by ligand binding. (no second messenger needed)
- Directly related to ion channels (when the drug starts produce its effect, the effect will directly change the ion channel, open or close the channel).
- Involved in very fast synaptic transmission.
- Response occurs in milliseconds.

E.g: **nicotinic acetylcholine** receptor that is activated by occupancy of a ligand as **acetycholine**.

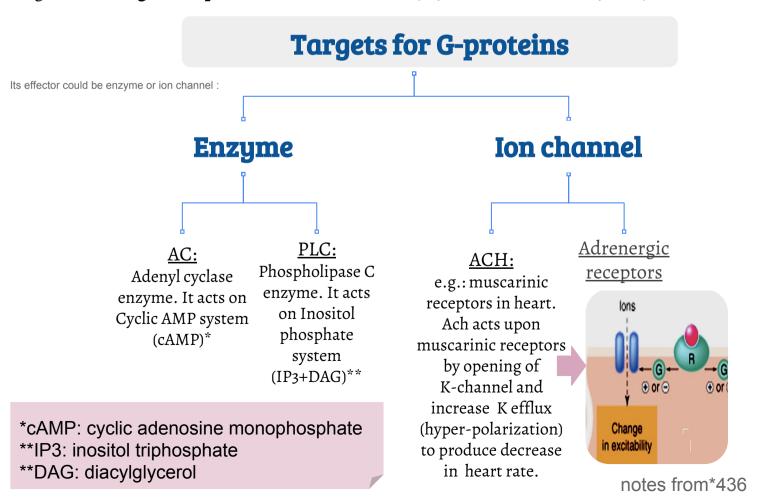
notes from*436

Type II: G-Protein coupled receptor - (metabotropic receptor)


• What is it?

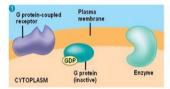
It's a receptor (located at cell membrane) cause changes in intracellular effector (especially in metabolic reaction) via G-protein.** در سناه بالبایوکمستر ی بتفهمونه افضل لو در ستوا

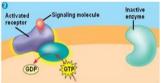
Other names?

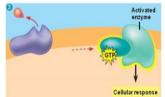

It's also called "metabotropic receptor" while tropic means changes in ions. سبب التسمية: لآنها تحدث تغيرات في الأيونات وهذه التغيرات تسبب تغير في الأيونات

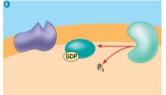
- The largest family that accounts for many known drug targets.
- Located at cell membrane
- Coupled to intracellular effectors via G-protein
- Response through on channels or enzymes.
 (the effect is not direct, first the drug binds with the receptor, then G protein take the drug then go to the ion channel or enzyme, 'the drug will not effect the ion channel or the enzyme')
- Involved in rapid transduction
- Response occurs in seconds. (it is not in milliseconds so that it is not very rapid)

E.g. Muscarinic receptors of Ach

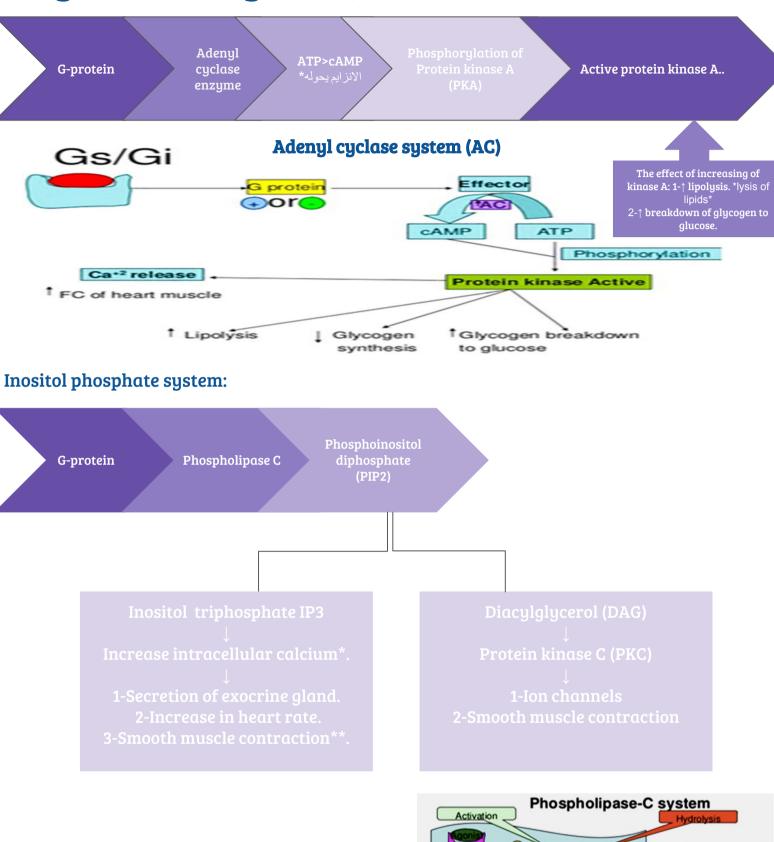

E.g. Adrenergic receptors of Noradrenaline (alpha and beta receptors)




G-protein


- Regulatory proteins.
- Regulate guanine nucleotides GDP,GTP.
- Comprise of three subunits ($\alpha\beta\gamma$), α subunit possess GTPase activity.
- When the trimer binds to agonist-occupied receptor , the α -subunit dissociates & is then free to activate an effector .
- Activation of the effector is terminated when the bound GTP molecule is hydrolyzed the bound GTP to GDP which allow α -subunit to recembion with $\beta\gamma$ and return to its inactive state.

So It is a Regulatory protein found in the cell membrane , Comprise of three subunits $(\alpha\beta\gamma)$ (where α subunits possess (auld) GTPase activity), It is an intermediary (eull) between the receptor and the effector.

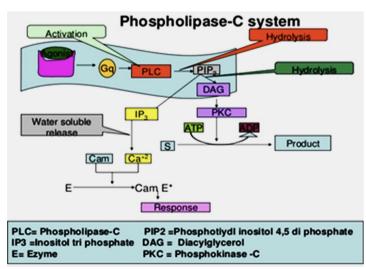


The story of G-protein:

نفس اللي فوق بس ب: steps*

- 1) The ligand bind to the receptor
- 2) The receptor undergo conformational change
- 3) G-protein bind to the receptor
- + α subunit become active(has GTP molecule) & dissociates (تنفصل) from $\beta\gamma$
 -

before step.1 α subunit was inactive
(has GDP molecule)
- 4) Then α subunit is free to activate an effector , by hydrolyzed the bound GTP to GDP
- 5) Hydrolyzation of GTP to GDP also allow α -subunit to recombine with ($\beta\gamma$) and returns to its inactive state.

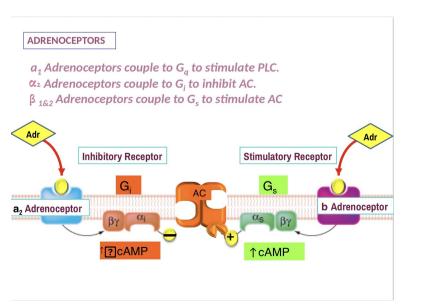

Cyclic AMP system(cAMP):

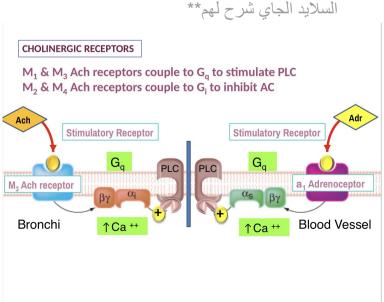
notes 436*:

The G-protein will affect on the Phospholipase C and produce 2 substances: IP3 AND DAG, and both of these substances will increase the calcium level in the cell.

- * The endothelium reticulum storage the calcium, and the IP3 will affect on the endothelium reticulum and make it release the calcium, that will increase the Ca level inside the cell.
- ** stick with this rule: whenever there is increasing in the Ca level inside the cell, there will be contraction.

Classes of G protein

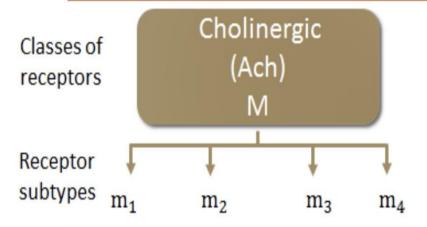

Divided according to their α -subunits into: Gs, Gi and Gq.


Gs and Gi produce, respective, stimulation and s= stimulation inhibition of AC. (Adenylyl cyclase)

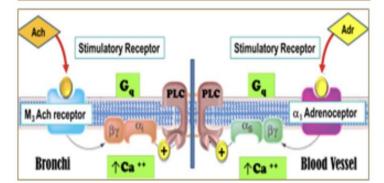
Gq is linked to activation of Phospholipase C system.

Receptors are selective to α subunit & effector with which they couple.

*When Ac (adenylyl cyclase) decreased, cAMP is decreased, calcium is decreased .

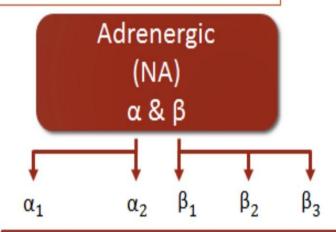


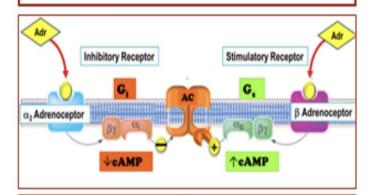
ITS IMPORTANT


AC = Adenylyl cyclase PLC = Phospholipase C Ach = Acetylcholine M= muscarinic NA= noradrenaline Adr= adrenaline

G protein coupled receptors

- · Most abundant type.
- Receptors are selective to <u>α subunit</u> and <u>effector</u> with which they couple.


 $m_1 \& m_3$ couple to G_q to stimulate PLC $m_2 \& m_4$ couple to G_i to inhibit AC odd# > stimulate even# > inhibit


Ach works on the m_3 receptor in the <u>bronchi</u> which activates G_q which in turn activates PLC and increases Ca concentration

Adr works on the α_1 receptor in the <u>blood</u> <u>vessel</u> which activates G_q which in turn activates PLC and increases C_a concentration

different drugs (Ach / Adr) different receptor (m_3 / α_1) same effect (\P Ca) same effector (PLC) same G proteins (G_a)

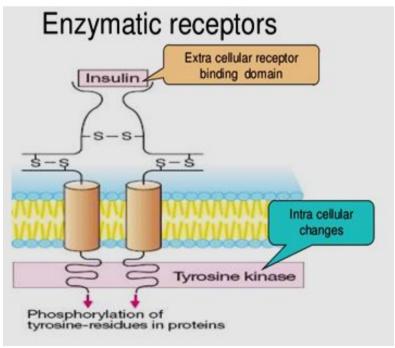
 $\begin{array}{l} \alpha_1 \text{ couple to } G_q \text{ to stimulate PLC} \\ \alpha_2 \text{ couple to } G_i \text{ to inhibit AC} \\ \beta_1 \ \& \ \beta_2 \text{ couple to } G_s \text{ to stimulate AC} \end{array}$

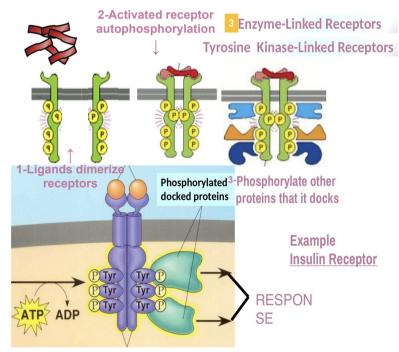
Adr binds to the α₂ receptor which activates G_i which inhibits AC and decreases cAMP concentration

Adr binds to the β receptor which activates G_s which stimulates AC and increases cAMP concentration

same drug (Adr) different receptor (α_2 / β) opposite effect ($\psi / \uparrow cAMP$) same effector (AC) different G proteins (G_i / G_s)

Type III (Enzyme-Linked receptors) (Tyrosine Kinase-linked receptor)

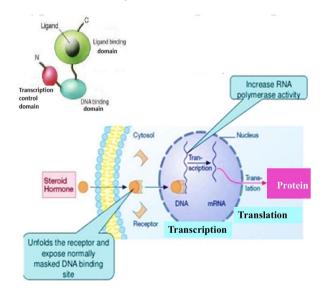

- o Located at cell membrane.
- o Linked to enzyme (with intrinsic enzymatic activity).
- o Response occurs in minutes to hours.
- o Involved in response to hormones, growth factors.
- o They control many cellular functions as metabolism and growth.


Activation of Type III receptors results in:

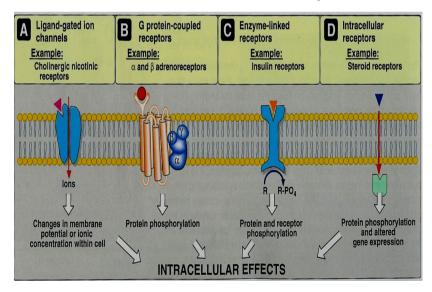
Activation of kinases as tyrosine kinase with phosphorylation of tyrosine residue on their substrates and activation of many intracellular signaling pathways in the cell.

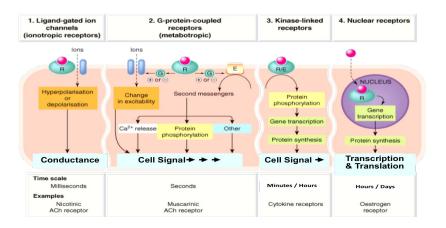
E.g. Insulin receptors.

Insulin receptors

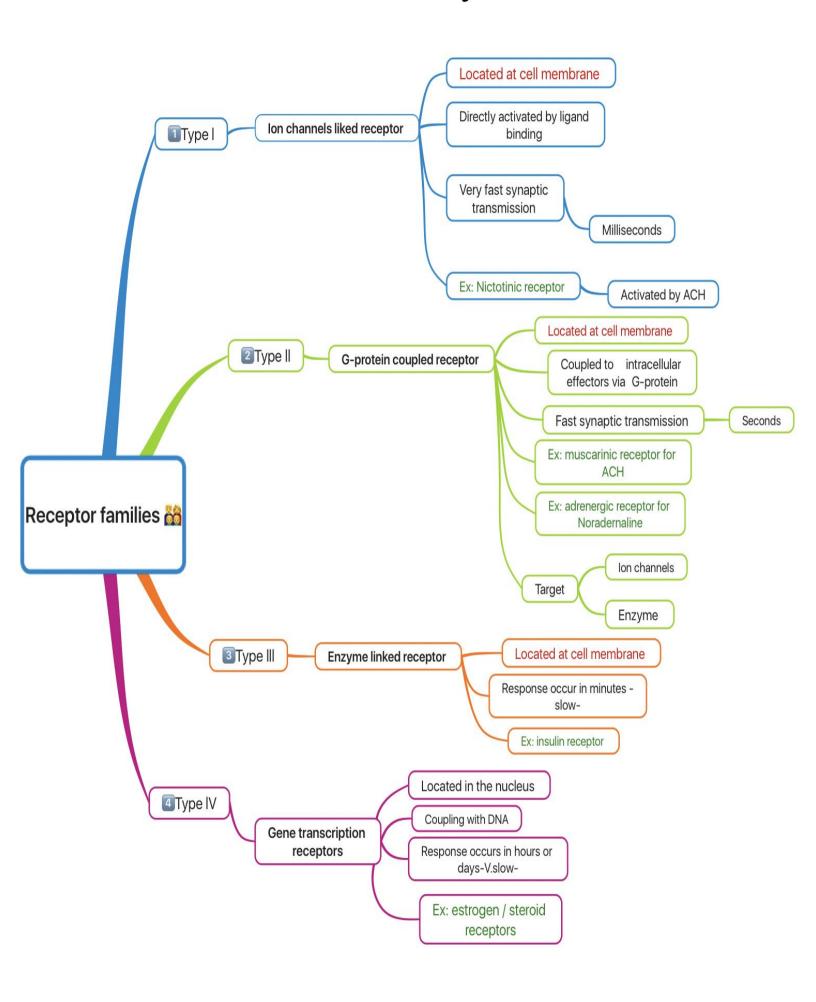

Type IV: Gene transcription receptors (Nuclear receptors)

- o Located intracellularly
- o Directly related to DNA (Gene transcription).
- o Activation of receptors either increase or decrease protein synthesis
- o Response occurs in hours or days and persists longer.
- o Their natural ligands are lipophylic hormones; steroids, thyroids, estrogen.


Type IV: Gene transcription receptors


- They possess an area that recognizes specific DNA sequence in the nucleus which can bind it. This sequence is called a Responsive Element [RE] .
- This means that the activated receptors are acting as TRANSCRIPTION FACTORS [TF] → expressing or repressing target genes.

Type IV: Gene transcription receptors



الصورتين اللي تحت بعض موجودة بآخر سلايدين من سلايدات الدكتورة.*

Summary

1-all of the following are a surface receptors except:

A-Type IV B-Type II C-Type III D-Type I

2-Which one of the following receptorsoccurs in milliseconds (the fastest):

A- G-Protein B-IonChannel-Linked C-Enzyme-Linked D-linked to gene transcription

3-Nicotinic receptors activated by acetylcholine is an example for:

A- G-Protein B-Enzyme-Linked C-ion channel-Linked D-linked to gene transcription

4-Muscarinic receptors of Ach is an example for:

A- IonChannel-Linked B- G-protein C-Enzyme-Linked D- gene transcription receptor

5-Increase intracellular calcium will cause:

A-Secretion of exocrine glands

B-Increase in heart rate

C-Smooth muscle contraction

D-all above

6-..... andproduce respective stimulation and inhibition of AC:

A- Gs &Gq B- Gi &Ga

C-none of the above

D- Gs &Gi

7-which of the following is Directly related to DNA:

A- IonChannel-Linked B- G-protein C-Enzyme-Linked D- gene transcription receptor

8-Gene transcription receptors usually occurs in:

A-seconds B-minutes
C-millisecond D- hours or days

Useful videos

https://www.youtube.com/watch?v=xT0mAQ4726s https://youtu.be/i7 VTkhR3UI

Team members:

Giris:

Alanoud Alessa
AlFahdah alSaleem
Ghadah Alhenaki
Ghada Alqarni
Laila Alsabbagh
Norah Aldubaib
Nouf AlOtaibi
Rahaf AlShammari
Rahaf Althnayan
Reem Alqarni
Rinad Alghoraiby
Shaden AlOtay