

Autocoids

Objectives:

- To describe the synthesis, receptors and functions of histamine, eicosanoids ,nitric oxide , angiotensin, kinins & 5-HT.
- To study the agents which enhance or block their effects.

Autocoids

Autacoids are biomaterial substances that Are synthesized and metabolized locally , they may effect each of :

They either be autocrine or paracrine :

- the autacoids derivate from other substance :

Original	Derivatives
Amino acids	Histamine
	Serotonin
Endogenous peptide	Kinins
	Angiotensin
Fatty acids	Eicosanoid
Gas	nitrogen (NO)

-Histamine is synthesized from histidine

-histamine is stored in mast cells & basophil & lungs

There are 4 types of histamine receptors :

Receptor Type	Major Tissue Locations	Major Biologic Effects
H ₁	smooth muscle, endothelial cells,	acute allergic responses
H ₂	gastric parietal cells, Cardiac muscle,	secretion of gastric acid
H ₃	central nervous system	neurotransmission
H ₄	mast cells, eosinophils, T cells	regulating immune responses

-Stimulation of H1 cause contraction of smooth muscles & uterus & bronchioles & increase bowel peristalsis

(انقباضات الأمعاء)

-stimulation of H2 cause secretion of gastric acid in stomach

Administration of histamine

Rapid IV

- 1- fall in •bloodpressure
- 2-increase CSF
- pressure
- 3-Headache •

Slow IV & SC

1-Increase • temperature

- 2-Flushing skin
- Increase heart rate & blood flow

Indermal injections

Itching •

Types of H Blockers & examples & clinical uses

Type of H blocker	Examples	Clini	cal uses
H1	1 st G* 1-Diphenhydramine 2- promethazine	1-Allergic rhinitis 2- urticarial	1- insomnia 2-motion sickness
	2 ND G 1-citrizine 2-fexofenadine	(joint effect of both of generation s)	Conjunct ivitis
H2	Cimetidine	1-Gas 2-Pe ulc	stritis eptic er
H3	Betahistine	Verti bala distur	go & ince pances

* <u>The major difference between 1st & 2nd generations is the</u> <u>first one cause sedating effect</u>

H3-receptor blockers

betahistine

It produces dilatation of blood vessels in inner ear

Used in treatment of:-

Vertigo and balance disturbances

synthesis

Cox Isozymes:-

Actions of prostaglandins

Actions of prostaglandins

They are proinflammatory

Cause vasodilatation of vascular smooth muscle

Inhibition of platelets aggregation/ increase platelet aggregation

Sensitize neurons to cause pain

Induce labor

Decrease intraocular pressure

Acts on thermoregulatory center of Hypothalamus to 个 body temperature

Acts on kidney to increase glomerular filtration

Acts on parietal cells of stomach to protect gastric mucosa

Prostacyclin VS. thromboxane

vessel wall

arachidonic acids

COX

platelets

cyclic endoperoxides (PGG2, PGH2) prostacyclin synthetase thromboxane synthetase

PROSTACYCLIN

antiaggregating efect
vasodilatation

THROMBOXANE

aggregagating efect
vasoconstriction

Clinical uses of PGs analogs

Drug	Use
Carboprost	Induce abortion in first trimester
Latanoprost	Glaucoma
Misoprostol	Peptic ulcer
Alprostadil	Erectile dysfunction
Zileuton	lipoxygenase inhibitor and Bronchial asthma
Zafirlukast (leukotreine receptor blocker)	Bronchial asthma

Nitric oxide : is a highly diffusible stable gas .

(NOS): Nitric oxide synthase

NOS STIMULATORS AND INHIBITORS

LOCATION OF NOS ISOFORMS

immune response

Action Of NO :

- Inhibition of platelet and monocyte adhesion and aggregation.(in blood coagulation cascade)
- Inhibition of smooth muscle proliferation.
- Inhibition of angiogenesis
- Protection against atherogenesis.
- Atherogenesis: formation of fatty plaques in the arteries.
- Synaptic effect in the peripheral and central nervous system.Potentiation of long-term memory.
- Host defense and cytotoxic effect on pathogens. Quantity of (NO) act as free radical.
- Cytoprotection
- Vasodilation: (paracrine)

Summary of NOS action :

nNOS	eNOS	iNOS
 Cardiac function, Peristalsis, Sexual arousal 	 Vascular tone, 	 In response to attack by parasites, bacterial infection and tumor growth Causes septic shock, autoimmune conditions

No mechanism of action :

- Activates guanylate cyclase
- increasing cGMP
- and thereby lowering [Ca2+]

(No) therapeutic uses :

- diabetes, hypertension & atherosclerosis causes reduction of Endothelial (NO) production.
 - NO is used in critical care to treat pulmonary hypertension in neonates*1.
- NO is used in patients with right ventricular failure secondary to pulmonary embolism
 - NO donors*2 used e.g. in hypertension & angina pectoris.
- Sildenafil potentiates the action of NO on corpora cavernosa smooth muscle. used to treat erectile dysfunction

=1*جنين غير مكتمل النمو

2=Drugs that Produce NO*

Angiotensin

Biosynthesis:

Renin released from the kidney converts angiotensinogen to Ag I ACE converts Ag I to Ag II

Actions of angiotensin II

- Promotes vasoconstriction directly or indirectly by releasing NA & AD.
- Increases force of contraction of the heart by promoting calcium influx.
- Increases aldosterone release \rightarrow sodium & water retention.
- Causes hypertrophy of vascular and cardiac cells and increases synthesis and deposition of collagen by cardiac fibroblasts (remodeling).

Angiotensin

is a peptide hormone that causes vasoconstriction and a subsequent increase in blood pressure. It is part	Angiotensin inhibitors "ACE"	Angiotensin receptor blockers "ARBs"
of the reninangiotensin system, which is a major target for drugs that lower blood pressure. Angiotensin also	Those are captopril and enalapril.	Those are Isoartan and valsartan.
stimulates the release of aldosterone, another hormone, from the adrenal cortex.	USEFUL VIDEO:Renin Ang System(Click here) Video:Renin-Angiotensin	giotensin Aldosterone

Angiotensin inhibitors "ACE"

Those inhibitors cause a fall in the blood pressure in hypertensive patients especially those with high rennin levels.

Rennin is a hormone. Renin's primary function is therefore to eventually cause an increase in blood pressure, leading to restoration of perfusion pressure in the kidneys. Renin is secreted from juxtaglomerular kidney cells, which sense changes in renal perfusion pressure, via stretch receptors in the vascular walls.

Angiotensin receptor blockers

- Angiotensin receptors AT I & AT II
- AT 1 receptors predominate in vascular smooth muscle, mediate most of the known actions of Ang, coupled to G proteins & DAG
- Similar uses to ACEI

Clinical uses of Angiotensin inhibitors "ACE"

- hypertension
- cardiac failure
- myocardial infarction

RAAS =Renin angiotensinaldosterone System(للفهم) How is RAAS activated? By binding of the active form Ag2 with AT1 receptor that leads to Aldosterone secretion So Angiotensin is a hormone that stimulates Aldosterone secretion in the kidney As a result, the Sympathetic Nervous System is stimulated and following actions will take place

Are Bradykinin & kallidin Bradykinin is formed by proteolytic cleavage of circulating proteins (kininogens)

Actions of bradykinin:

- Potent vasodilator , reduces blood pressure
- Causes pain, this effect is potentiated by prostaglandins. Has a role in inflammation
- If injected locally it dilates arterioles
 [→generation of PGI release of NO] and increases permeability of post capillary venules
- Constricts most smooth muscles , intestine , uterus, bronchiole, contraction is slow and last long
- Stimulation of epithelial ion transport & fluid secretion in airways & GIT

Receptors & clinical uses

B 1	B2
inducible under condition of inflammation	constitutive
Low affinity to bradykinin & mediates the majority of its effects	High affinity to bradykinin & mediates the majority of its effects
significant role in inflammation &	mediates the majority of its effects

Therapeutic uses:

- No current therapeutic use of bradykinin
- Increased bradykinin is implicated in the therapeutic efficacy and cough produced by ACEIs

SEROTONIN 5-HT

Serotonin is synthesized from the amino acid L-tryptophan

Distribution of Serotinin 5-HT

Intestinal wall ,in chromaffin cells, in neuronal cells in the myenteric plexus

Blood ,in platelets , released when aggregated, in sites of tissue damage

CNS:- a neurotransmitter, in midbrain

Actions of 5-ht

GIT:-5-HT increases motility

Contracts uterus bronchiole ,other smooth muscles

Blood vessels:- Contracts large vessels by a direct action & relaxes other vessels by releasing NO

Increases capillary pressure & permeability

Platelets:- causes aggregation, aggregated platelets release 5-HT

Neuronal terminals:- 5-HT stimulates nociceptive neuron endings \rightarrow pain

CNS;-stimulates some neurons & inhibits others, inhibits release of other neurotransmitters

Clinical conditions in which 5-ht is implicated:

1-migraine:

Activation of trigeminal system leads to peptides release promoting an inflammatory reaction. This increases flow of sensory traffic through the brain stem, the thalamus & the cortex

Sumatriptan

- 5-HT1D, 1B &1F-receptor agonist , effective in acute migraine attack
- It binds to 5HT1B , in cranial blood vessels causing vasoconstriction & 1D & 1F in presynaptic trigeminal nerve causing inhibition of pro inflammatory neuropeptide release

2- Carcinoid syndrome:

- A malignant tumor of intestinal chromaffin cells
- The tumor releases 5-HT, SP, PGs, kinins & histamine causing flushing ,diarrhea, bronchoconstriction & hypotension
- Serotonin antagonists

 (cyproheptadine, 5HT2 antagonist) could be administered to control diarrhea ,flushing & malabsorption

MCQs

1.what is the type of nos that is responsible for immune response?

A. e-nos B.i-nos C- n-nos d- a and c

2.which one of the following is considered a nos inhibitor ?

A-bradykinin B-histamine chemoglobin d-Ach

3. NITRIC OXIDE activates ?

A- cAMP b-GMP C-guanylate cyclase D-CA++

4.which one of the following is used for Glaucoma :

A.Zafirlukast B.Latanoprost C.Alprostadil D. Ketoconazol which one of the following is 5.lipooxygenase inhibitor A.Corboprost B. Misoprostol C.Zileuton D.Betahistine

- 6- one is not an action of Serotinin 5-ht
- A. increases motility
- **B.** Contract of smooth muscles
- C. Increase of Urine
- D. Increases capillary pressure & permeability

7- which one of the following the 5-HT distribute to

- A. a neurotransmitter, in midbrain
- B. a smooth muscles
- C. Pancreas
- **D. Thyroid glands**

A.C 2.C 3.C 4.B 5.C 6.C 7.A

Useful videos:

<u>Antihistamine</u>

Team members:

Boys:

Abdullah abdurahman al-asseri Bader Altamimi Fayez Ghiyath Aldarsouni Maan Abdulrahman Shukr Mohammed alnajeim Omar Alsuhaibani Sultan Omar Almalki Yazeed abdullah alkhayyal Majid alshali Adel Alorainy

Team Leaders: YAZEED ALI ALHARBI