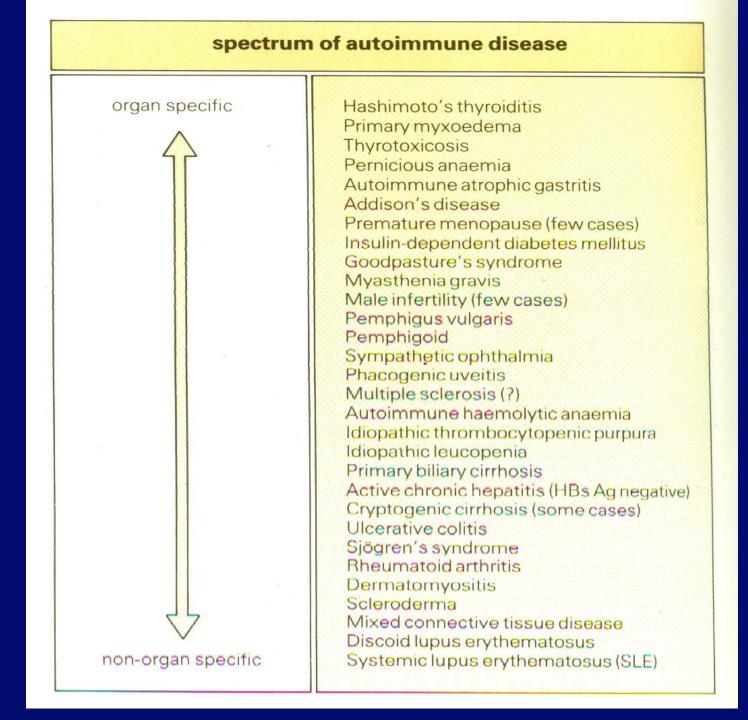
Autoimmune Diseases

Immunology Unit Department of Pathology College of Medicine Reference Kuby Immunology 7th Edition 2013 Chapter 16 Pages 525-531


Objectives

- To know that the inflammatory processes in auto immune diseases are mediated by hypersensitivity reactions (type II, III and IV)
- To know that autoimmune diseases can be either organ specific or may be generalized involving many organs or tissues
- To understand that the manifestations of autoimmune diseases depend upon the organ and the degree of damage inflicted on the target tissues

Disease processes and tissue damage are due to Type II Type III and Type IV hypersensitivity reactions

SOME AUTOIMMUNE DISEASES IN HUMANS

Disease	Self-antigen	Immune response
	Organ-specific autoimmune diseases	
Addison's disease	Adrenal cells	Auto-antibodies
Autoimmune hemolytic anemia	RBC membrane proteins	Auto-antibodies
Goodpasture's syndrome	Renal and lung basement membranes	Auto-antibodies
Graves' disease	Thyroid-stimulating hormone receptor	Auto-antibody (stimulating)
Hashimoto's thyroiditis	Thyroid proteins and cells	T _{DTH} cells, auto-antibodies
Idiopathic thrombocyopenia purpura	Platelet membrane proteins	Auto-antibodies
Insulin-dependent diabetes mellitus	Pancreatic beta cells	$T_{\rm DTH}$ cells, auto-antibodies
Myasthenia gravis	Acetylcholine receptors	Auto-antibody (blocking)
Myocardial infarction	Heart	Auto-antibodies
Pernicious anemia	Gastric parietal cells; intrinsic factor	Auto-antibody
Poststreptococcal	Kidney	Antigen-antibody complexes
glomerulonephritis		
Spontaneous infertility	Sperm	Auto-antibodies
	Systemic autoimmune disease	
Ankylosing spondylitis	Vertebrae	Immune complexes
Multiple sclerosis	Brain or white matter	T _{DTH} and T _⊂ cells, auto-antibodies
Rheumatoid arthritis	Connective tissue, IgG	Auto-antibodies, immune complexes
Scleroderma	Nuclei, heart, lungs, gastrointestinal tract, kidney	Auto-antibodies
Sjogren's syndrome	Salivary gland, liver, kidney, thryoid	Auto-antibodies
Systemic lupus erythematosus (SLE)	DNA, nuclear protein, RBC and platelet membranes	Auto-antobidies, immune complexes

Examples of Autoimmune Diseases Affecting Different Systems:

Nervous System: Multiple sclerosis Myasthenia gravis Autoimmune neuropathies such as: - Guillain-Barré Syndrome (GBS)

Autoimmune uveitis

Blood:

Autoimmune hemolytic anemia Pernicious anemia Autoimmune thrombocytopenia

Blood Vessels:

Temporal arteritis Anti-phospholipid syndrome Vasculitides such as Wegener's granulomatosis Behcet's disease

Skin:

- Psoriasis
- Dermatitis herpetiformis
- Pemphigus vulgaris
- Vitiligo

Gastrointestinal System:

Crohn's Disease Ulcerative colitis Primary biliary cirrhosis Autoimmune hepatitis

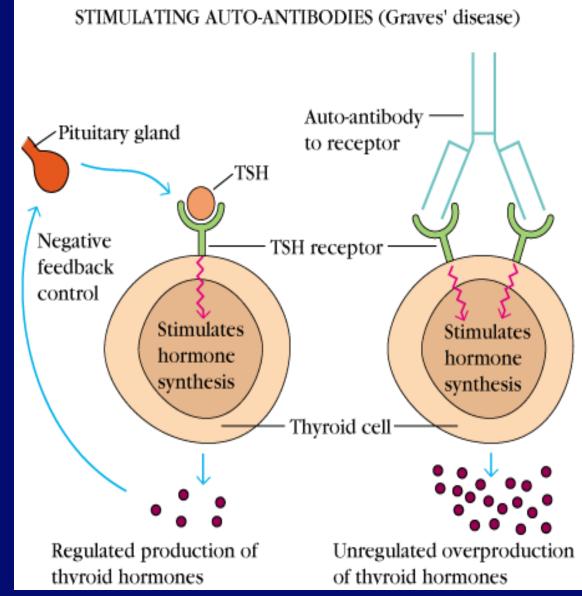
Endocrine Glands:

Type 1 or immune-mediated diabetes mellitus Grave's Disease Hashimoto's thyroiditis Autoimmune oophoritis and orchitis Autoimmune disease of the adrenal gland

Multiple Organs, Musculoskeletal System

Rheumatoid arthritis Systemic lupus erythematosus Scleroderma Polymyositis, dermatomyositis Ankylosing spondylitis Sjogren's syndrome

Organ Specific Autoimmune Diseases


Mediated by stimulating or blocking auto-antibodies

Graves' disease (Stimulating antibodies)
Myasthenia gravis (Blocking Antibodies)

1. Graves' Disease (Thyrotoxicosis)

•Production of thyroid hormones is regulated by thyroidstimulating hormones (TSH)

•The binding of TSH to a receptor on thyroid cells stimulates the synthesis of two thyroid hormones: thyroxine and triiodothyronine



Fig. 1A

•A person with Graves' **Disease makes auto**antibodies to the receptor for TSH.

•Binding of these autoantibodies to the receptor mimics the normal action of TSH leading to overstimulation of the thyroid gland

2. Myasthenia Gravis

- Clinically characterised by weakness and fatigability on sustained effort
- Antibodies directed against acetylcholine receptor (AChR)
- IgG Ab interact with the postsynaptic AChR at the nicotinic neuromuscular junction (NMJ)
- There is reduction in the number of functional AChR receptors by increasing complement mediated degradation of receptors

Myasthenia gravis

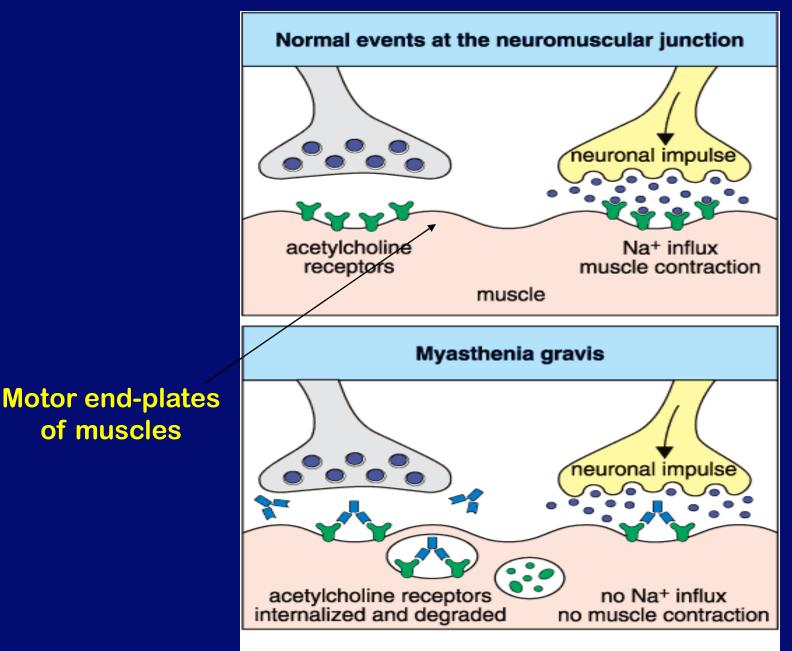
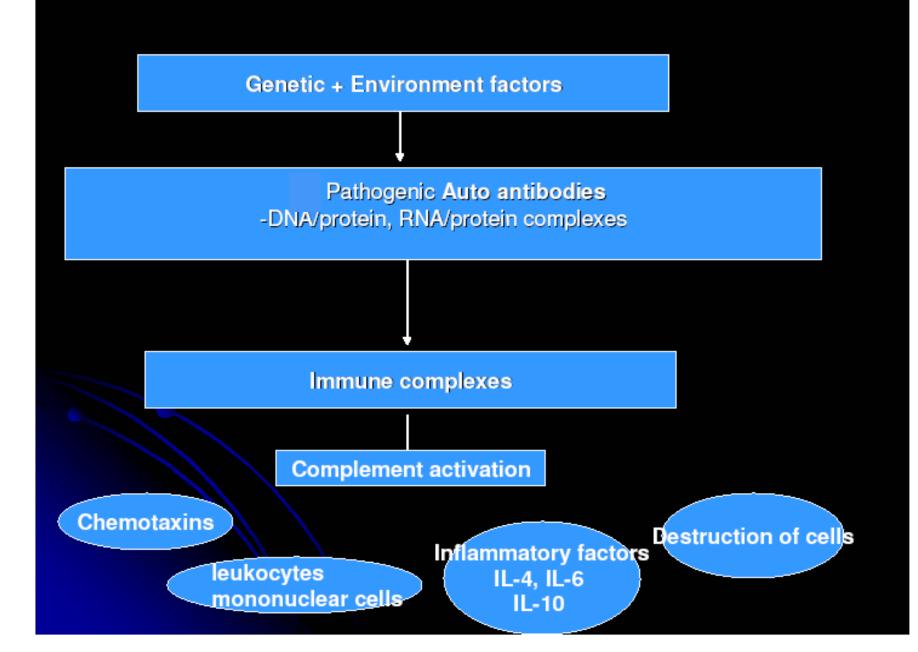


Fig 13.10 © 2001 Garland Science

Systemic Autoimmune diseases

I. Systemic lupus erythematosus (SLE)


Systemic lupus erythematosus is the prototype of systemic autoimmune disorder

The characteristic "butterfly rash" is made worse by exposure to sunlight

Lupus is a potentially fatal autoimmune disease

Figure 13.11 The Immune System, 3ed. (© Garland Science 2009)

Dermatological: Cardiovascular CNS: malar rash cognitive defects, anxiety, Pericarditis Symptom complex discoid lesions depression, psychosis, Verrucous endocarditis => seizures, and/or hair loss oral ulcers neuropathies, cerebral emboli Constitutional nunctate vasculitis CAD from Raynaud's Fatigue: Nailfold teroids erythema/crus Pulmonary: Myalgia livedo on Dyspnea and hands/legs Fever: restrictive LFTs Bullous rash Pleurisy, on legs Weight change: pleural effusion, dermatitis or pneumonitis, fingers interstitial lung Arthritis: disease, and pulmonary migratory and hypertension asymmetrical. Only a few joints are usually Renal: affected, especially

•Joint deformities including ulnar deviation, MCP subluxation, and swan-neck deformities caused by tendon laxity, rather than bony destruction.

the hands

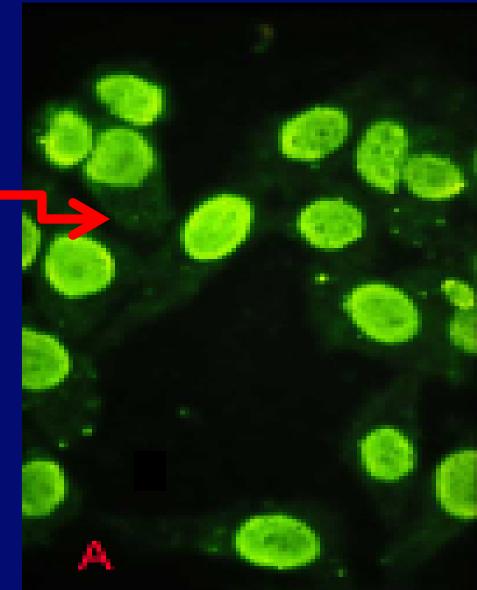
Hematologic

- Anemia of chronic disease
- Asymptomatic leukopenia
- Thrombocytopenia

lymphadenopathy

- •Gastritis/peptic ulcer due to NSAID/corticosteroids
- •Pancreatitis, peritonitis, and colitis: due SLE vasculitis

glomerulon


GI

ephritis

- Lupoid hepatitis
- hepatosplenomegaly

Auto antibodies

- The anti-nuclear antibody (ANA) test is the best screening test for SLE and is determined by immunofluorescence
- The ANA is positive in significant titer (usually 1:160 or higher) in virtually all patients with SLE

Significance of Autoantibodies in SLE

Antigen	SLE	Clinical Associations
ds DNA	70%	Nephritis (and flare)
Anti RNP	40%	Scleroderma, myositis
Histones	70%	Drug-Induced Lupus
SM Antigen	30%	Severe SLE
Anti ribosomal	20%	Psychosis, Depression
Antiphospholipid	50%	Clotting, fetal loss
SSA/Ro	35%	SCLE, Sjogren's, NLS
SSB/La	15%	SCLE, Sjogren's, NLS
Anti neuronal	60%	Active CNS lupus

Other investigations

- Anti-double-stranded DNA titers
- Complement Levels (CH50, C3, C4)
- ESR
- CRP
- Complement Split products
- Decreased complement C1q

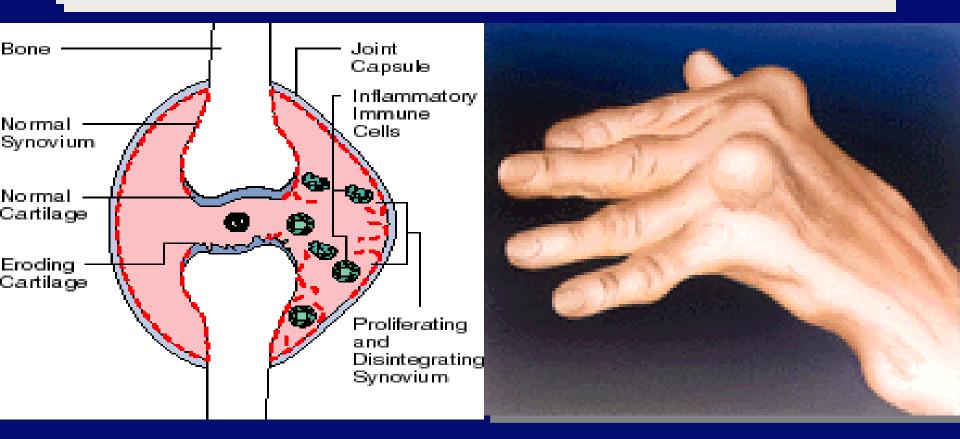
NSAIDs (Non-steroidal anti-inflammatory drugs)

Antimalarials (Hydroxychloroquine)

Immunosuppressive agents

2. Rheumatoid Arthritis

- Rheumatoid arthritis is a common autoimmune disease in which the normal immune response is directed against an individual's own tissue, including the :
 - Joints
 - Tendons
 - Bones


Resulting in inflammation and destruction of these tissues with progressive disability, systemic complications (cardiovascular, pulmonary ..) and early death.

Rheumatoid Arthritis (Contd.)

- Both prevalence and incidence are 2-3 times greater in women than in men.
- The cause of rheumatoid arthritis is not known: complex interplay among genotype, environmental triggers.
- Genetic factors: HLA-DR B1 locus alleles that contain a common amino acid motif (QKRAA) in the HLA-DRB1 region, termed the shared epitope, confer particular susceptibility

Rheumatoid Arthritis

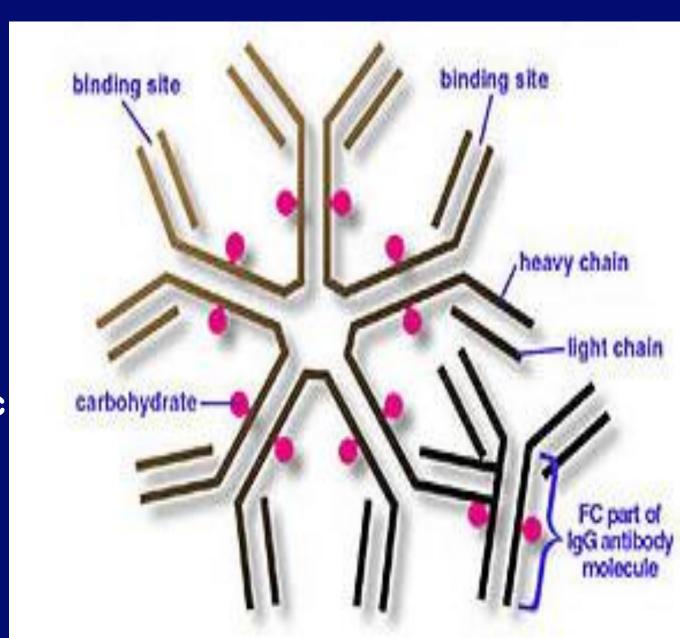
Rheumatoid arthritis (RA) affects peripheral joints is <u>characterized by an inflammation of the synovium:</u> <u>synovitis</u> that may cause destruction of both cartilage and bone.

Pathogenesis (Type III hypersensitivity reaction)

Inflammatory cells produce pro inflammatory cytokines/ TNF- α , IL-1 that induce the secretion of metalloproteinases; which are known to cause joint destruction

T cell activation due to unknown antigens also contributes to the inflammation in RA

There is a lack of tolerance to citrullinated proteins and the appearance of autoantibodies directed against citrullinated proteins


Pathogenesis (Type III hypersensitivity reaction)

In rheumatoid arthritis, many individuals produce another group of auto-antibodies known as rheumatoid factor

These antibodies react with determinants in the F_c region of IgG

Rheumatoid Factor

The classic rheumatoid factor is an IgM antibody Directed against Fc part of IgG

Pathogenesis (Type III hypersensitivity reaction)

Such auto-antibodies bind to normal circulating IgG, forming IgM-IgG complexes which may be deposited in joints.

This leads to activation of synovial macrophages

The macrophages engulf the immune complexes and then release TNF and other proinflammatory cytokines e.g., IL-1

Diagnosis:

- Anti-citrullinated protein/peptides(ACP) antibodies/ anti-CCP : specific markers
- Rheumatoid factor

Medications

- NSAIDS (Non-steroidal anti-inflammatory drugs)
- Disease-modifying drugs (eg, gold, hydroxychloroquine, sulfasalazine, penicillamine)
- Immunosuppressive therapy:
 - Corticosteroids
 - Methotrexate
- Surgery
- Physical therapy

Take home message

- The spectrum of autoimmune disorders is wide ranging from single organ involvement to a systemic disease
- The disease process is usually prolonged and is generally associated with significant morbidity and mortality
- The mainstay of the treatment is to maintain immunosuppression

Thank you