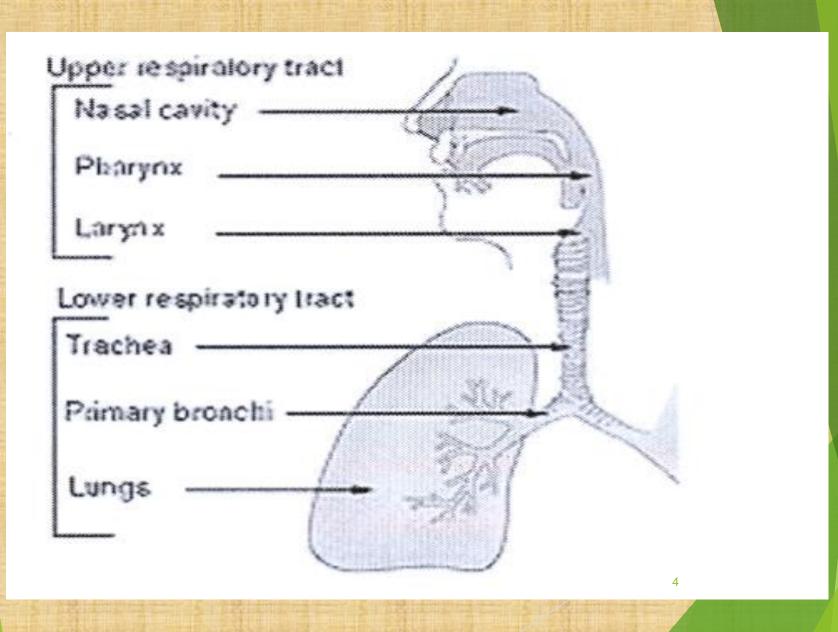
Treatment of Respiratory Tract Infections

Prof. Mohammad Alhumayyd Dr. Aliah Alshanwani

30-1-2018


Objectives of the lecture

At the end of lecture, the students should be able to understand the following: The types of respiratory tract infections (RTI) The antibiotics that are commonly used to treat RTIs & their side effects Understand the mechanism of action & pharmacokinetics of individual drugs.

Classification of RTIs

Upper respiratory tract infections (URTI)

Lower respiratory tract infections (LRTI)

Causes of URTIs

 Viruses; Most URTIs are of viral etiology (Should NOT be treated with antibiotics)
 Treatment: rest & plenty of fluids, OTC cold & pain relievers

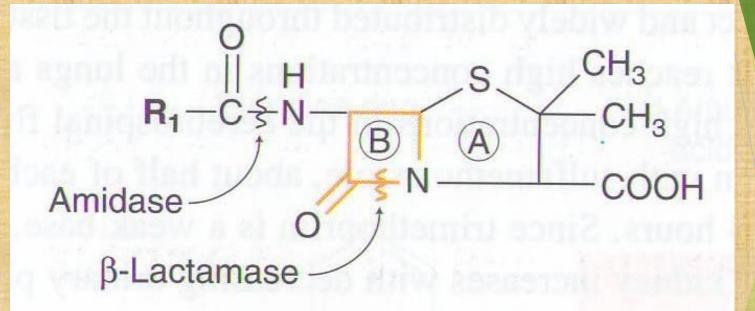
Bacteria (mainly Group A streptococcus, H. influenza)

Treatment: Antibiotics. The type depends on: Type of bacteria Sensitivity test. LRTIS (costly & more difficult to treat) Bronchitis (inflammation of major bronchi & trachea)

Acute, or Chronic, or Acute exacerbation of chronic bronchitis

Causes: viruses or bacteria (*H. influenza*, *Streptococcus pneumonia* & *Moraxella catarrhalis*).

Pneumonia (Serious infection of bronchioles & alveoli)


Community – Acquired (CAP)

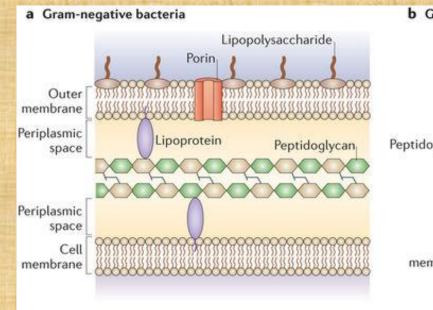
Hospital-acquired

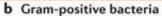
Causes: Bacteria S. pneumonia(66%), H. influenza (20%),** M. catarrhalis (20%). Antibiotics commonly used in the treatment of RTIs

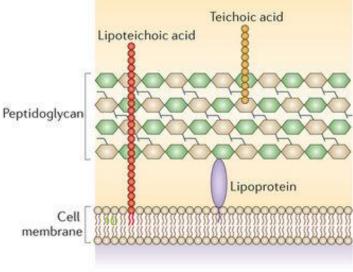
- Beta-lactam antibiotics (Penicillins / Cephalosporins)
 Macrolides
 Fluoroquinolones
 - Aminoglycosides
 - Doxycycline.

Penicillins

Penicillin nucleus


Broad-spectrum penicillins


Amoxicillin-Clavulanic acid
 Ampicillin-Sulbactam
 Piperacillin-tazobactam


 Act on both gram+ve & gram-ve microorganisms.

 Mechanism of action of Penicillins
 Inhibit bacterial cell wall synthesis through inhibition of peptidoglycan layer of the cell wall.

Bactericidal.

. .

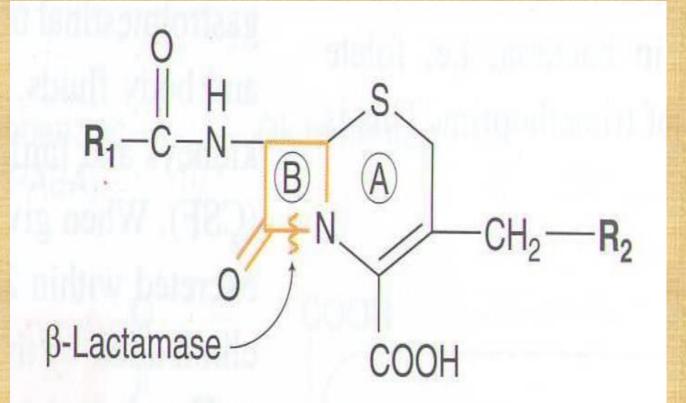
Pharmacokinetics of Penicillins

Given po or parenterally Not metabolized in human Relatively lipid insoluble Excreted mostly unchanged in urine Probenecid slows their elimination & prolong their half live Half-life 30-60 min (increased in renal failure).

Hypersensitivity reactions

Diarrhea Superinfections

Adverse effects


Convulsions (after high i.v. dose or in renal failure)

Nephritis

Therapeutic uses of Penicillins

URTISLRTIS.

Cephalosporins

Cephalosporin nucleus

14

Mechanism of action of Cephalosporins

Inhibit bacterial cell wall synthesis

Bactericidal (Similar to Penicillins)

Classified into 3 gps:

1st Generation Cephalosporins

e.g. Cephalexin
Given po
Effective against gram positive bacteria
Effective in URTIs.

2nd Generation Cephalosporins

E.g. Cefuroxime, cefaclor Given po Effective mainly against Gram-negative bacteria Well absorbed po Active against β-lactamase –producing bacteria **Uses: Upper & lower RTIs.**

3rd Generation Cephalosporins Ceftriaxone / Cefotaxime / Cefixime Given by intravenous route More effective against gramnegative bacilli Effective in treatment of pneumonia.

Pharmacokinetics of Cephalosporins

Cephalosporins are given parenterally & po

Relatively lipid insoluble (like penicillins)

Hence, do not penetrate cells or the CNS, except for third generations

Mostly excreted unchanged by the kidney (glomerular & tubular secretion)

Probenecid slows their elimination & prolong their half lives

Half-life: 30-90 min; except ceftriaxone 4-7 hr.

Hypersensitivity reactions

20

Thrombophilibitis

Superinfections

• Diarrhea

Macrolides

Erythromycin

Azithromycin

Clarithromycin

Mechanism of action

Inhibit bacterial **protein** synthesis by binding to 50S subunit of the bacterial ribosomal RNA

Bacteriostatic

Bactericidal at high concentrations.

Clarithromycin

More effective on G+ve bacteria Stable at gastric acidity Inhibits cytochrome P450 system Metabolized in liver to active metabolite Biliary route is the major route of elimination Only 10-15% excreted unchanged in the urine Half-life 6-8 hours.

Azithromycin

More effective on G-ve bacteria Stable at gastric acidity Undergo some hepatic metabolism (inactive metabolite) **Biliary route is the major route of** elimination Only 10-15% excreted unchanged in the urine Half-life (3 days) **Once daily dosing** No effect on cytochrome P- 450.²⁴

Clinical uses of Macrolides

Chlamydial pneumonia

Legionella pneumonia.

Adverse effects

Hypersensitivity Reactions. 26

Fluoroquinolones

Ciprofloxacin

Moxifloxacin

Gatifloxacin

Mechanism of action

Block bacterial DNA synthesis by inhibiting DNA Gyrase enzyme (an enzyme involved in DNA supercoiling).

Antibacterial spectrum

 Ciprofloxacin mainly effective against G-ve bacteria
 Moxifloxacin & Gatifloxacin G -ve & G+ve & given once daily.

(highly active against Pseudomonas species)

Pharmacokinetics

Given po or parenterally

Concentrates in many tissues (kidney, prostate, lung & bones/ joints)

Excreted mainly through the kidney

Their relatively long Half-life allow once daily (moxifloxacin & Gatifloxacin) & twice-daily (ciprofloxacin) dosing.

Clinical Uses

1

2

3

Acute exacerbation of chronic obstructive pulmonary disease

Community acquired pneumonia

Legionella pneumonia

Adverse effects

Nausea, vomiting, diarrhea
 CNS effects (confusion, insomnia, headache, anxiety)

 Damage of growing cartilage (arthropathy)

Phototoxicity (avoid excessive sunlight).

Contraindications

Not recommended for patients younger than 18 years

Pregnancy

Breast feeding women.

