Cas exchange and gas transfer

$>$ Color index:
Red: important
Green: doctor's notes
Grey: extra information
Pink: found only in female's slides
Blue: found only in
male's slides
Yellow: numbers

By the end of the lecture you will be able to:

(1) Define partial pressure of a gas.
(2) Understand that the pressure exerted by each gas in a mixture of gases is dependent on the pressure exerted by the other gases (Dalton's Law).
(3) Understand that gases in a liquid diffuse from higher partial pressure to lower partial pressure (Henry's Law) Describe the factors that determine the concentration of a gas in a liquid.
(4) Describe the components of the alveolar-capillary membrane (i.e., what does a molecule of gas pass through).
(5) Knew the various factors determining gas transfer: - Surface area, thickness, partial pressure difference, and diffusion coefficient of gas.
(6) State the partial pressures of oxygen and carbon dioxide in the atmosphere, alveolar gas, at the end of the pulmonary capillary, in systemic capillaries, and at the beginning of a pulmonary capillary.

Gas exchange through the respiritory membrane

- Gas exchange happens at the level of the alveolus and the capillaries that surround them,
- so both the capillaries and alveoli have to be patent (not collapsed) and fully functioning in order for gas transfer to take place.

(a)

RESPIRATORY UNIT

Respiratory Unit:

- Also called "respiratory lobule"
- composed of : 1-a respiratory bronchiole, 2-alveolar ducts, 3-atria, 4-alveoli.
- There are about 300 million alveoli in the two lungs, and each alveolus has an average diameter of about 0.2 millimeter.
- The alveolar walls are extremely thin, and between the alveoli is an almost solid network of interconnecting capillaries.

(c) Elsevier. Guyton \& Hall: Textbook of Medical Physiology 11 e - www.studentconsult.com

LAYERS OF THE RESPIRATORY MEMBRANE

Diffusion of oxygen from the alveolus into the red blood cell and diffusion of carbon dioxide in the opposite direction. Note the following different layers of the respiratory membrane:

1. A layer of fluid lining the alveolus
2. The alveolar epithelium
3. An epithelial basement membrane
4. Interstitial space
5. Capillary basement membrane
6. The capillary endothelial membrane

Partial pressure of gases

Partial pressure of gases (in a mixture)

- The pressure of gas is caused by the constant kinetic movement of gas molecules against the surface. كمبة الحركة"(الصدمات) لجزئُات الغاز الي تسويها على سطح ما
- In respiratory physiology, there is a mixture of gases mainly of $\mathrm{O}_{2}, \mathrm{~N}_{2}$, and CO_{2}.
- The rate of diffusion of each of these gases is directly proportional with the partial pressure of the gas. كل غاز حركته تُّب بكمبة ضغط محددة

Pressure of gases dissolved in water and tissue: The pressure of gases dissolved in fluid is similar to their pressure in the gaseous phase and they exert (تبذ) their own individual partial pressure.

```
As partial pressures increases, the
rate of diffusion through the
respiratory membrane increases.
```


Gas Pressures In a MIxture of Gases-"Partial

 Pressures" of Individual GasesPressure is caused by multiple impacts of moving molecules against a surface. Therefore, the pressure of a gas acting on the surfaces of the respiratory passages and alveoli is proportional to the summated force of impact of all the molecules of that gas striking the surface at any given instant. This means that the pressure is directly proportional to the concentration of the gas molecules.

In respiratory physiology, one deals with mixtures of ases, mainly oxygen, nitrogen, and carbon dioxide. The rat of diffusion of each of these gases is directly proportional to the pressure caused by that gas alone, which is called the partial pressure of that gas. The concept of partial pressure can be explained as follows.

Consider air, which has an approximate composition of 79 percent nitrogen and 21 percent oxygen. The total pressure of this mixture at sea level averages 760 mm Hg . It is clear from the preceding description of the molecular basis of pressure that each gas contributes to the total pres sure in direct proportion to its concentration. Therefore, 79 percent of the 760 mm Hg is caused by nitrogen $(600 \mathrm{~mm} \mathrm{Hg})$ and 21 percent by $\mathrm{O}_{2}(160 \mathrm{~mm} \mathrm{Hg})$. Thus, the "partial pressure" of nitrogen in the mixture is 600 mm Hg , and the "partial pressure" of O_{2} is 160 mm Hg ; the total pressure is 760 mm Hg , the sum of the individual partial pressures. The partial pressures of individual gases in a mixture are designated by the symbols $\mathrm{PO}_{2}, \mathrm{PCO}_{2}, \mathrm{PN}_{2}$ PHe, and so forth.

Laws in gas exchange § transfer

- It states that the total pressure exerted by a mixture of gases is the sum of partial pressure of each individual gas present.

Ptotal $=$ P1 + P2 + P3 + . . .

Henry's law of Gas solubility

- Gas solubility is proportional to the gas partial pressure. If the temperature stays constant increasing the pressure will increase the amount of dissolved gas.

Low pressure equilibrium Low concentration

Double the pressure equilibrium Double the concentration

Factors that affect the rate of gas diffusion through the respiratory membrane

$$
D=a \frac{\Delta P \times A \times S}{d \sqrt{ } M W}
$$

D: diffusion rate

1. P: Partial pressure differences. (directly proportional)
2. A: Surface area for gas exchange. (direct proportional)
3. S: Solubility of gas. (direct proportional)
4. D: Diffusion distance (thickness).
(inversely proportional)
5. MW: Molecular weight. (inversely proportional)

The diffusion rate of the specific gas:

- Diffusion coefficient for the transfer of each gas through the respiratory membrane depends on: بناخذ بعد شوي أن الكربون

Directly on partial pressure
o Directly on its solubility (S) through the membrane
o Inversely on the square root of its molecular weight (MW).

- CO_{2} diffuses 20 times as rapidly as O_{2}. (if we have diffusion failure, O 2 will be

Factors that a affect the rate of gas diffusion through the respiratory membrane

P: Partial pressure differences

The pressure difference between the two sides of the membrane (between the alveoli and the blood).

When the pressure of the gas in the alveoli $(P O 2=104)$ is greater than the pressure of the gas in the blood (PO2 $=40$) as for O_{2}, net diffusion from the alveoli into the blood occurs.

When the pressure of the gas in the blood (PCO2=45) is greater than the pressure in the alveoli $(\mathrm{PCO2}=40)$ as for CO_{2}, net diffusion from the blood into the alveoli occurs.
(A): Surface area of the membrane.

Removal of an entire lung decreases the surface area to half normal.

In emphysema with dissolution of the alveolar wall \downarrow Surface.Area. \rightarrow to 5-folds because of loss of the alveolar walls.

(D:Diffusion distance)

The thickness of the respiratory membrane
\uparrow thickness of the respiratory membrane e.g., edema \longrightarrow
\downarrow rate of diffusion inversely proportionall.

The thickness of the respiratory membrane is inversely proportional to the rate of diffusion through the membrane.

- The partial pressure of oxygen in the inspired air starts off as 160 and decreases gradually as it passes around the systemic circulation because most of it will diffuse to the tissues, finally reaching a concentration of 120 in the expired air. And the opposite is true for CO2.

Diffusion of Oxygen
Diffusion from atmosphere into
alveolous
2. Diffusion of oxygen from alveoli into pulmonary blood: PO2 in the alveolus = $104 \mathrm{mmHg}, \mathrm{PO}_{2}$ of the venous blood $=40$ mmHg since a large amount of O_{2} has been removed from blood as it passes through the peripheral pulmonary capillary is $104-40=64 \mathrm{mmHg}$.
3. Diffusion of $\mathbf{O}_{\mathbf{2}}$ from capillaries into interstitial fluid: PO_{2} in the capillaries $=95 \mathrm{mmHg}$ in interstitial fluid $=40$ mmHg . Therefore O_{2} diffuses from arterial end of capillary into the interstitial fluid.
4. Diffusion of $\mathrm{O}_{\mathbf{2}}$ from interstitial fluid into cells: PO_{2} in interstitial fluid $=40$ mmHg PO 2 in the cells $=23 \mathrm{mmHg}$ therefore O_{2} diffuses from interstitial fluid into the cells.

Important slide

DIFFUSION OF CO2

The diffusion of CO_{2} occurs in the opposite direction of oxygen. It diffuses from the cells to the interstitial fluid and to alveoli

1. Diffusion of CO_{2} from cells to interstitial fluid: PCO_{2} within the cell $=46 \mathrm{~mm} \mathrm{Hg}, \mathrm{PCO}_{2} \underline{\text { in }}$ the interstitial fluid $=45 \mathrm{~mm} \mathrm{Hg}$. Thus it diffuses from the cells to the interstitial fluid.
2. Diffusion of CO_{2} from interstitial fluid into capillaries: PCO_{2} in interstitial fluid $=45 \mathrm{~mm} \mathrm{Hg}$, while in the arterial end of the capillaries $=40 \mathrm{~mm}$ Hg . Therefore, $\mathbf{C O}_{\mathbf{2}}$ diffuses from interstitial fluid into the capillaries.
3. Diffusion of CO_{2} from pulmonary blood into alveoli: $\mathrm{PCO}_{\mathbf{2}} \underline{\text { in pulmonary blood }}=45 \mathrm{~mm} \mathrm{Hg}$, while in the alveolus, it is 40 mm Hg . So $\mathbf{C O}_{\mathbf{2}}$ diffuses from pulmonary blood into the alveoli.
4. Diffusion from alveolous into atmosphere

Partial pressures of respiratory gases as they enter and leave the lungs (at sea level

	\mathbf{N}_{2}	O_{2}	CO_{2}	$\mathrm{H}_{2} \mathrm{O}$
Atmospheric Air* (mmHg)	597.0 (78.62\%)	159.0 (20.84\%)	0.3 (0.04\%)	3.7 (0.50\%)
Humidified Air (mmHg)	563.4 (74.09\%)	149.3 (19.67\%)	0.3 (0.04\%)	47.0 (6.20\%)
Alveolar Air (mmHg)	569.0 (74.9\%)	104.0 (13.6\%)	40.0 (5.3\%)	47.0 (6.2\%)
Expired Air (mmHg)	566.0 (74.5\%)	120.0 (15.7\%)	27.0 (3.6\%)	47.0 (6.2\%)

- Oxygen concentration in the atmosphere is
- So PO_{2} in atmosphere $=760 \mathrm{mmHg} \times 21 \%=$
- This mixes with "old" air already present in alveolus to arrive at PO_{2} of in alveoli.
- Carbon dioxide concentration in the atmosphere is
- So PCO_{2} in atmosphere $=760 \mathrm{mmHg} \times 0.04 \%=$
- This mixes with high CO_{2} levels from residual volume in the alveoli to arrive at PCO_{2} of in the alveoli.

Composition of alveolar air and its relation to atmospheric air

> Why Alveolar air does not have the same concentrations of gases as atmospheric air (see the table in previous slide) ?

1. Alveolar air is partially replaced by atmospheric air with each breath.
2. O_{2} is constantly absorbed from the alveolar air.
3. CO_{2} constantly diffuses from the pulmonary blood into the alveoli.
4. The dry atmospheric air enters the respiratory passage is humidified before it reaches the alveoli.

Figure 35-1.

Copyright ©2006 by The McGraw-Hill Companies, Inc. All rights reserved.

Summary of PO_{2} and PCO_{2} values in air, lungs, blood, and tissues, graphed to emphasize the fact that both O_{2} and CO_{2} diffuse "downhill" along gradients of decreasing partial pressure. (Redrawn and reproduced, with permission, from Kinney JM: Transport of carbon dioxide in blood. Anesthesiology 1960;21:615.)

POZ and PCOZ in various positions of normal expired air

FIGURE 39-6
Oxygen and carbon dioxide partial pressures in the various portions of normal expired air.

02 concentration in the alveoli

- At resting condition 250 ml of oxygen enter the pulmonary capillaries/min at ventilatory rate of $4.2 \mathrm{~L} / \mathrm{min}$. (tidal volume ' 500^{\prime} '- dead space ' 150 ') x respiratory rate ' $12^{\prime}=4200 \mathrm{ml} / \mathrm{min}$.
- During exercise 1000 ml of oxygen is absorbed by the pulmonary capillaries per minute, the rate of alveolar ventilation must increase 4 times to maintain the alveolar PO_{2} at the normal value of 104 mmHg .

[^0]
CO_{2} concentration in the alveoli

- At resting condition: 200 ml of $\mathbf{C O}_{\mathbf{2}}$ is excreted per minute (normal rate), as shown in the solid curve. At normal ventilation of 4.2 liters/min.
- The operating point for Alveolar $\mathbf{P C O}_{\mathbf{2}}$ is at point \underline{A} at 40 mmHg .
- Alveolar $\mathbf{P C O}_{2}$ increases directly in proportion to the rate of $\mathbf{C O}_{\mathbf{2}}$ excretion. (as represented by the dotted curve for 800 ml CO 2 excretion/min).

- Alveolar $\mathbf{P C O}_{\mathbf{2}}$ decreases in inverse proportion to alveolar ventilation.

Female's team:
Leader: Alanoud Salman Alotaiby
Members:
Ahad Ahmed AlGrain.
Rinad Alghoraiby
Lina Alohali
Maha Alnahdi
Hadeel Awartani
Sarah AIFlaij
Munira Al Hadlaq

Male's team:

Leader: Abdulhakim Alonaiq Members:

[^0]: 1) the rate of absorption of O 2 into the blood
 2) the rate of entry of new O 2 into the lungs by the ventilatory process.
 التّمرين الجسم يحتّاج اكسجين عالي 1000mI كل دققة فُشان يو ازن تركيز الاكسجين وPO2 بعد ارتفاع الابزور بشن لازم يرفع الفتنليشن "ادخال الهواء للرئة"
