$>$ Color index:
Red: important
Green: doctor's notes
Grey: extra information
Pink: found only in female's slides
Blue: found only in male's slides
Yellow: numbers

Transport Of 02 802

contact us at:
同 physiologyteam437@gmail.com
@physio437

objectives:

By the end of the lecture you will be able to:

> Understand the forms of oxygen transport in the blood, the importance of each.
$>$ Differentiate between O 2 capacity, O 2 content and O 2 saturation. Describe (Oxygen- hemoglobin dissociation curve)
> Define the P50 and its significance.
> How DPG, temperature, $\mathrm{H}+$ ions and PCO 2 affect affinity of O 2 for hemoglobin and the physiological importance of these effects.
> Describe the three forms of carbon dioxide that are transported in the blood, and the chloride shift.

Overview

This lecture is arranged as:

1. hemoglobin and its types and relation with transfer of O2 CO2.
2. Transfer O 2 .
3. The oxygen-haemoglobin dissociation curve.
4. Transfer CO2.

Hemoglobin

Hemoglobin production controlled by erythropoietin. Production stimulated by PC02 delivery to kidneys.
Erythropoietin is synthesized 90\% kidney 10\% liver

Types of hemoglobin:

- Oxyhemoglobin:

Normal heme contains iron in the reduced form ($\mathrm{Fe} 2+$). Fe2+ shares electrons and bonds with oxygen. $\mathrm{Hb}+\mathrm{O}_{2} \quad \mathrm{HbO}_{2}$

- Deoxyhemoglobin:

When oxyhemoglobin dissociates to release oxygen, the heme iron is still in the reduced form.

- Methemoglobin:

Has iron in the oxidized form ($\mathrm{Fe} 3+$).
Lacks electrons and cannot bind with 02.
Blood normally contains a small amount.

- Carboxyhemoglobin:

The reduced heme is combined with carbon monoxide.
The bond with carbon monoxide is 210 times stronger than the bond with oxygen.
Transport of 02 to tissues is impaired.

97\% bound to hemoglobin (oxyhemoglobin)

Form of O2 Transport
(a) 3\% dissolved in plasma

- O 2 binds to the heme group on hemoglobin, with 4 oxygens $/ \mathrm{Hb}$
- Higher PO2 results in greater Hb saturation.

Transport of 0 ?

> Transport of respiratory gases between the lungs and body tissues is the main function of blood.
$>\quad 97 \%$ of the oxygen transported from the lungs to the tissues is carried in chemical combination with hemoglobin.
$>3 \%$ is carried by physically being dissolved in plasma.
$>$ Transport of O_{2} by haemoglobin:

- Hb combines with oxygen the compound formed is called oxyhaemoglobin.
- The normal amount of Hb in young adults is about $14-16 \mathrm{gm} / \mathrm{dl}(100 \mathrm{ml})$ of the blood. Each gram of Hb can bind with 1.34 ml of O_{2}. Thus, if a person has a Hb is $16 \mathrm{gm} / \mathrm{dl}$ of blood his blood can carry.
- $16 \times 1.34=21.44 \mathrm{ml}$ of $\mathrm{O}_{2} / \mathrm{dl}$.
> Partial Pressure Difference:
- 1. High Partial Pressure of $\mathrm{O}_{2}\left(\mathrm{PO}_{2}\right)$ in Alveoli.
- 2. Low Po_{2} in Capillary.
> Concentration Gradient:
- 1. High Concentration of O_{2} in Alveoli.
- 2. Low Concentration of O_{2} in Capillary.

Transport of oxygen during dissolved state:

$>$ We said before only 3% of O_{2} is transported in the dissolved state. [the rest is bound to HB] [dissolved oxygen is important for areas with no blood supply e.g. the cornea and cartilage of long bone]
$>$ At normal arterial PO_{2} of 95 mmHg , about 0.29 ml of oxygen is dissolved in each 100 ml of blood. [Amount of dissolved oxygen * PO_{2} in arteries $0.003 * 95=0.29$]
$>$ When the PO_{2} of the blood falls to 40 mmHg in tissue capillaries, only 0.12 of oxygen remains dissolved.

Obstructive [Amount of dissolved oxygen * PO_{2} in venous blood $0.003 * 40=0.12$]
> Therefore 0.17 ml of oxygen is normally transported in the dissolved state to the tissues per each 100 ml of blood.
[Amount of dissolved oxygen at veins - amount of dissolved oxygen at arteries 0.29-0.12=0.17]

0_{2} capacity, content and saturation

$>\mathbf{O}_{\mathbf{2}}$ content: amount of O_{2} in blood $\left(\mathrm{ml} \mathrm{O}_{2} / 100\right.$ ml blood).
$>\mathbf{O}_{2}$-binding capacity: maximum amount of O_{2} bound to hemoglobin ($\mathrm{ml} \mathrm{O}_{2} / 100 \mathrm{ml}$ blood) measured at 100\% saturation. As we menston before $21.44 \mathrm{ml} \mathrm{O} / 100 \mathrm{ml}$ is 100% saturation
> Percent saturation: \% of heme groups bound to O_{2}

$$
\% \text { saturation of } \mathrm{Hb}=\frac{\text { oxygen content } \times 100}{\text { oxygen capacity }}
$$

$>$ Dissolved O_{2} : Unbound O_{2} in blood $\left(\mathrm{ml} \mathrm{O}_{2} / 100\right.$ ml blood).
$>$ Blood is 100% saturated with O_{2} : each gram of Hb carry $1.34 \mathrm{ml} \mathrm{O}_{2}$. So O_{2} content $=15 \mathrm{~g} \mathrm{Hbx} 1.34 \mathrm{O}_{2}=$ 20 ml .
$>$ Blood is only 97% saturated -bc not all Hb types transfer O_{2} with O_{2} : contain $19.4 \mathrm{ml} \mathrm{O}_{2} / 100 \mathrm{ml}$ blood
> Amount of oxygen released from the hemoglobin to the tissues is: 5 ml 02/100 ml blood So O_{2} content in venous blood $=19.4-5=14.4 \mathrm{ml}$
> During strenuous exercise: the oxygen uptake by the tissue increases 3 folds So $5 \times 3=15 \mathrm{ml} \mathrm{O}_{2} / 100 \mathrm{ml}$ blood
So O_{2} content in venous blood $=19.4-15=4.4 \mathrm{ml}$ $\mathrm{O}_{2} / 100 \mathrm{ml}$ blood.
$>$ At rest: tissue consume $250 \mathrm{ml} \mathrm{O}_{2} / \mathrm{min}$ and produce $200 \mathrm{ml} \mathrm{CO}_{2}$

The oxygen-haemoglobin dissociation curve

$>$ It shows the progressive increase in the percentage saturation of the Hb with the increase in the PO2 in the blood
$>$ The PO 2 in the arterial blood is about 95 mmHg and saturation of Hb with O 2 is about 97%
$>\quad$ In the venous blood returning from the tissues, the PO 2 is about 40 mmHg and the saturation of Hb with O 2 is about 75%

There is
always
a question
from this slide

Factors shifting oxygen-haemoglobin

 dissociation curve to the right1- increased by hydrogen ions
2- increased by CO_{2}
3- increased temperature
4- increased DPG diphosphoglycerate

Factors affecting

 oxygen-haemoglobin dissociation curve

Factors affecting the affinity of Hb for O_{2}

4 important factors

$$
\text { The } \downarrow \mathrm{pH} \text { or } \uparrow(\mathrm{H}+\text { conc })
$$

The \uparrow temperature

> The \uparrow concentration of 2,3 diphosphoglycerate (2,3-DPG)
$\uparrow \mathrm{PCO}_{2}$ concentration (Bohr effect) \Rightarrow all shift the curve to the right.

P50: it is the partial pressure of O_{2} at which 50% of Hb is saturated with O_{2}. (Almost 30 mmhg)
\uparrow P50 means right shift \longrightarrow Iower affinity for O_{2} [more oxygen will be released from the tissue] [unloading]
\downarrow P50 means left shift \longrightarrow higher affinity for O_{2} [more O 2 will bind to the tissue][binding]

Factors Affecting Oxyhemoglobin Dissociation Curve

Tible 16.9 Factors That Affect the Affinty of Hemogobbin for Oxyen and the Position of the Oxhenomodobin Dissociation Curre

Fatoor	Affinty	Position of Curve	Corments
IpHt	Decresed	Shitrotere rigt	
TTenpeature	Decresed	Shittrotereight	Incesese oxyen unloding durig execrice and ferer
123,0PG	Decresed	Shitrotere right	

Fible 16.10 Eteted d Lung Finction on Blood Acid.Bre Balance

Condition	pH	PCO_{7}	Vertilation	Cause of Compensation
Nomal	7.35-7.45	39.41 mmHg	Nomal	Notaplicable
Respritooy yadosis	Low	High	Hpoverendion	Cave oftreacosos
Respirioy y deldos	High	Low	Hpenereidision	Cause of trealdesis
Meatbliccrodosis	Low	Low	Hpenereidition	Compenstion for aidosis
Menbolicaldoois	High	High	Hpporenidion	Compenstion for deldbisis

Copyight © The MGGraw.-Hill Companies, Inc. Permission required tor reproduction or display.
Table 16.8 Effect of ph on HemogobbinAffinity for Oxygen and Unloading of Oxygen to the Tissues

pH	Affinity	Arterial O_{2} Content per 100 ml	Venous O_{2} Content per 100 ml	O_{2} Unloaded to Tissues per 100 ml
7.40	Normal	19.8 ml O	14.8 ml O	$5.0 \mathrm{ml} \mathrm{O}_{2}$
7.60	Increased	20.0 ml O	17.0 ml O	$3.0 \mathrm{ml} \mathrm{O}_{2}$
7.20	Decreased	19.2 ml O	12.6 ml O	$6.6 \mathrm{ml} \mathrm{O}_{2}$

The Rt and Lt shifts:

Definition:

- Rt shift means the oxygen is unloaded to the tissues from Hb
- Lt shift means loading or attachment of oxygen to Hb.
- Increased 2,3DPG, $\mathrm{H}+$, Temperature , PCO_{2} shift the curve to right.
-2,3DPG : is synthesized in RBCs from the glycolytic pathway, it binds tightly to reduced Hb . increased 2,3 DPG facilitate the oxygen release and shifts the dissociation curve to Rt.metabolically important phosphate compound present in the blood in different concentrations
-2,3 DPG increases in the RBCs in anemia and hypoxemia, and thus serves as an important adaptive response in maintaining tissue oxygenation fracilitate release of

[^0]-Fetal Hb: has a P50 of 20 mmHg in comparison to 27 mmHg of adult Hb .

The right and left shifts

$>$ Effect of increasing carbon dioxide and hydrogen ions that will shift the curve to the right on the curve (Bohr effect) it is a responsive mechanism
$>$ At lung:
Movement of CO_{2} from blood to alveoli will decrease blood $\mathrm{CO}_{2} \& \mathrm{H}+$
\rightarrow (4) \rightarrow shift the curve to left \qquad
 باس (بر جع شوي للانسار لا \& Increase

$>$ At tissues:
Increase $\mathrm{CO}_{2} \& \mathrm{H}+$ in blood leads to \rightarrow shift the curve to right.\& Decrease O_{2} affinity of Hb allowing more O_{2} transport to tissues
$>$ Shift of dissociation curve during exercise:
$>$ Exercise increases Temp, $\mathrm{H}+$, 2,3 DPG and shift the curve to Rt.
$>$ Utilization coefficient: The percentage of the blood that gives up its oxygen as it passes through the tissues capillaries.
$>$ Utilization Coefficient $=\mathrm{O}_{2} \underline{\text { delivered to the tissues } \backslash \mathrm{O}_{2} \text { content of arterial blood }}$
$>$ Normally at rest $=5 \mathrm{ml} / 20 \mathrm{ml}=25 \%$
$>$ During exercise it $=15 \mathrm{ml} / 20 \mathrm{ml}=75 \%-85 \%$

As the blood passes
through the tissues, CO2
diffuses from the tissue
cells into the blood. This diffusion increases the blood PCO2, which in turn raises the blood
$\mathrm{H}_{2} \mathrm{CO} 3$ (carbonic acid) and the hydrogen ion concentration.These effects shift the
O2-hemoglobin
dissociation curve to the right and downward,
forcing O2 away from the
hemoglobin and therefore
delivering increased
amounts of O2 to the
tissues. Exactly the
opposite effects occur in
the lungs

The Haldane Effect:

> When oxygen binds with hemoglobin, carbon dioxide is released to increase CO_{2} transport.
$>$ Binding of Hb with O_{2} at the lung causes the Hb to become a stronger acid, and this in turn displaces CO_{2} from the blood and into the alveoli.
$>$ Change in blood acidity during CO_{2} transport .
$>$ Arterial blood has a pH of 7.41 , and the pH of venous blood (which has higher PCO_{2}) falls to 7.37 (i.e. change of 0.04 units takes place, because of release of CO_{2}).

Respiratory Exchange ratio (Respiratory Quotient):

$>$ Normally it is $4 / 5=82 \%$
$>$ When Carbohydrate diet is used $\mathrm{R}=1$

Table 18.1	THE BASICS OF THE BOHR AND
	HALDANE EFFECTS

> A person on normal diet $\mathrm{R}=0.825$

Transport of CO_{2}

> Large amount of CO_{2} is continuously produced in the body.
\rightarrow Under normal resting conditions each 100 ml of deoxygenated blood contains 4 ml of CO_{2} which is carried in the blood in three forms:
70% of CO_{2} is transported in
bicarbonate form

- As CO_{2} diffuses into the tissue capillaries it then enters the red blood cells.
- CO_{2} reacts with water to form carbonic acid in the presence of carbonic anhydrase enzyme. This enzyme accelerates the reaction 4800 times more, so it occurs within a fractions of second.
-The carbonic acid is then dissociated into hydrogen ions $\left(\mathrm{H}^{+}\right)$and bicarbonate ions.
- Hydrogen ions combine with haemoglobin to form H, Hb, and the bicarbonate ions $\left(\mathrm{HCO}_{3}^{-}\right)$leave RBCs and enter the plasma. To maintain the negativity of RBCs, chloride ions ($\mathrm{Cl}=$) enter from the plasma into the RBCs.
- The exchange of bicarbonate ions from RBCs to plasma and Cl^{-}ions from plasma to RBCs is called the bicarbonate chloride shift phenomenon.
23% combines with the globin part of haemoglobin to form carbamino haemoglobin

$$
7 \% \text { is dissolved in plasma. }
$$

- Little CO_{2} is transported in the dissolved state to the lungs.
- Co combines with Hb at the same point on the Hb molecule as does oxygen.
- It binds with Hb about 250 times as much as O_{2} (affinity of Hb to CO is very high 250 times of that to O_{2}).
- It causes left shift of the $\mathrm{O}_{2}-\mathrm{Hb}$ curve.
[causes carbon monoxide poisoning] [we have to be very careful when using a heater because the gas is clear with no smell so we have to open the windows]
- PCO_{2} of venous blood is 45 mm Hg and the PCO_{2} of arterial blood is 40 mmHg .
- The amount of CO_{2} dissolved in the blood at 45 mmHg is $2.7 \mathrm{ml} / \mathrm{dl}(2.7 \%)$. The amount of CO_{2} dissolved at 40 mmHg is about 2.4 m . The difference between 2.7 and 2.4 is only 0.3 ml .
- About $0.3 \mathrm{ml} \mathrm{CO}_{2}$ is transported in the form of dissolved CO_{2} by each 100 ml of blood. It is about 7% of all CO_{2} is transported in this form.

Transport Of Coz

Diffusion Effected By:

$>$ Partial Pressure of $\mathrm{CO}_{2}\left(\mathrm{PcO}_{2}\right)$-Higher In Tissues Than In Capillary.
$>$ Concentration Gradient-CO2 Higher In Tissues Than In Capillary.
> Distance-Very Short..

Carbon Dioxide Transport And Chloride Shift

Reverse Chloride Shift In Lungs

At Pulmonary Capillaries

$>\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
$\mathrm{H}_{2} \mathrm{CO}_{3} \quad \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$

At the tissue
$>\mathrm{CO}_{2}$ diffuses into the RBC ; shifts the reaction to the right.
> Increased $\left[\mathrm{HCO}_{3}{ }^{-}\right]$produced in $\mathrm{RBC}: \mathrm{HCO}_{3}{ }^{-}$ diffuses into the blood.
$>\mathrm{RBC}$ becomes more + . Cl^{-}attracted in (Cl Cl^{-} shift).
> H^{+}released buffered by combining with deoxyhemoglobin.
$>\mathrm{HbCO}_{2}$ formed.
Unloading of O_{2}.

At the alveoli
$>\mathrm{CO}_{2}$ diffuses into the alveoli; reaction shifts to the left.
\Rightarrow Decreased $\left[\mathrm{HCO}_{3}^{-}\right]$in $\mathrm{RBC}, \mathrm{HCO}_{3}$ - diffuses into the RBC.
$>$ RBC becomes more - .
$>\mathrm{Cl}^{-}$diffuses out (reverse Cl^{-}shift).
> Deoxyhemoglobin converted to oxyhemoglobin.

- Has weak affinity for H^{+}.
$>$ Gives off HbCO_{2}.

Oxygen and Carbon dioxide Transport

(b) Oxygen pickup and carbon dioxide release in the lungs

- 2013 Pearson Education, Inc

At the alveoli

(a) Oxygen release and carbon dioxide pickup at the tissues

At tissue level

CO_{2} is produced in the tissue and transported through the blood.
1-7\% of the CO_{2} is dissolved in plasma
2- CO_{2} reacts with water in the plasma (slowly because it doesn't have enzymes) and transported as bicarbonate
3-CO CO_{2} reacts with water in the red blood cells (fast because of the enzyme carbonic anhydrase and is converted to carbonic acid then to bicarbonate and a proton.
4-CO2 reacts with hemoglobin and becomes carbaminohemoglobin
5-to maintain electrical equilibrium, bicarbonate is removed to outside of the RBC, and chloride is moved in. this is called a chloride shift
6-oxygen binds to the heme group on the hemoglobin

Quiz

1- The percentage of the blood that gives up its oxygen as it passes through the tissues capillaries is called:
A- dissolved state
B- utilization coefficient
C- haladen effect
D- oxyhemoglobin dissociation curve
2- how many of oxygen is transported normally in dissolved state to the tissue per 100ml of blood:
A- 0.29 ml
B- 0.12 ml
C- 0.17 ml
D- 19.4 ml

3-Each 100 ml of blood carry about:
A-5 ml of CO_{2} from the tissues
$\mathrm{B}-3 \mathrm{ml}$ of CO_{2}^{2} from the tissues
$\mathrm{C}-6 \mathrm{ml}$ of CO_{2} from the tissues
D-4 ml of CO_{2} from the tissues

4- CO Combined with Hb causes :
A-left shift of the $\mathrm{O}_{2}-\mathrm{Hb}$ curve. B -right shift of the $\mathrm{O}_{2}-\mathrm{Hb}$ curve. C -vertical shift of the $\mathrm{O}_{2}-\mathrm{Hb}$ curve. D-no change in the $\mathrm{O}_{2}-\mathrm{Hb}$ curve.

Female's team:

Leader: Alanoud Salman Alotaiby
Members:
1- Reem ALQarni
2- fatimah albassam
3- Ahad Ahmed ALGrain.
4- Noura Alothaim
5- Sarah AIFlaij

Videos links:
https://www.youtube.com/watch?v=bhJarMGNFw4\&index=33\&list=PLTF9h-T1TcJhcN o9M1VFXz6rMKT6CM_wd

[^0]: oxygen in tissue, shifts the curve to the right] [adaptive mechanism in case of pulmonary disease or living in a high altitude]

