
Sympatholytic & adrenergic blockers \OC-receptor Antagonists

Prof. Hanan HagarPharmacology Unit
College of Medicine

Classification of sympatholytics

- > Adrenergic neuron blockers
- > Adrenergic receptor blockers

Classification of sympatholytics

- > Adrenergic neuron blockers
 - Formation of False Transmitters
 e.g. α-Methyl dopa
 - Depletion of storage sitese.g. reserpine
 - Inhibition of release & enhance uptakee.g. guanethidine
 - Stimulation of presynaptic α₂ receptors
 e.g. Clonidine and α-Methyl dopa

Classification of sympatholytics Adrenergic neuron blockers

α-Methyl dopa

- Forms false transmitter that is released instead of NE
- Acts as central α_2 receptor agonist to inhibit NE release
- Drug of choice in
 - Treatment of hypertension in pregnancy (gestational hypertension- pre-eclampsia).

Classification of sympatholytics

Clonidine

- Acts as central α_2 receptor agonist to inhibit NE release
- suppresses sympathetic outflow activity from the brain.
- Little used as antihypertensive agent due to rebound hypertension upon abrupt withdrawal.

Apraclonidine

- is used in open angle glaucoma as eye drops.
- acts by decreasing aqueous humor formation.

1. Adrenergic Neuron Blockers [SYMPATHOLYTICS] 1. METHYLDOPA α-methyl tyrosine Norepinephrine (NE) Na Tyrosine **→ False Transmitters Dopa**←Tyrosine **Antihypertensive in** degraded monoamines 2. RESERPINE **PREGNANCY** MAO **→Depletes Stores** α_2 mitochondria NE 4. Clonidine Gaunthidine Presynaptic α_2 agonist **Enhance Uptake** synaptic cleft noradrenaline receptor 2. Adrenoceptor Blockers [ADRENOLYTICS]

Adrenergic receptor blockers

Include

- **α-receptor antagonists**
- **β**-receptor antagonists

Classification of α -receptor Antagonists

- Non-selective antagonists e.g. phenoxybenzamine
 & phentolamine.
- α_1 -selective antagonists e.g. prazosin, doxazosin.
- α_2 -selective antagonists e.g. yohimbine

Non-Selective α - Adrenoceptor Antagonists

Irreversible block of both α_1 and α_2 receptors

Long-acting (24 hrs)

Phentolamine:

reversible blocking of $\alpha_1 \& \alpha_2$ receptors.

Short acting (4 hrs).

Pharmacological actions

Both drugs cause:

- 1) Decrease peripheral vascular resistance
- 2) Postural hypotension.
- 3) Reflex tachycardia.
- Reflex tachycardia due to the fall in B.P, mediated by baroreceptor reflex and due to block α_2 in heart.

Therapeutic Uses:

□ Pheochromocytoma: Should be given before surgical removal to protect against hypertensive crisis.

Both drugs can precipitate arrhythmias and angina and are contra-indicated in patients with decreased coronary perfusion.

Adverse Effects of non-Selective \a-Adrenoceptor \frac{Antagonists:}

- Postural hypotension
- Tachycardia
- Headache
- Nasal stuffiness or congestion
- Vertigo & drowsiness
- Male sexual dysfunction (inhibits ejaculation).

Selective α 1-Antagonists

Prazosin, doxazosin, terazosin.

Prazosin (short half-life)

Doxazosin, terazosin (long half life)

Selective α 1-Antagonists

Pharmacological effects of α_1 —antagonists:

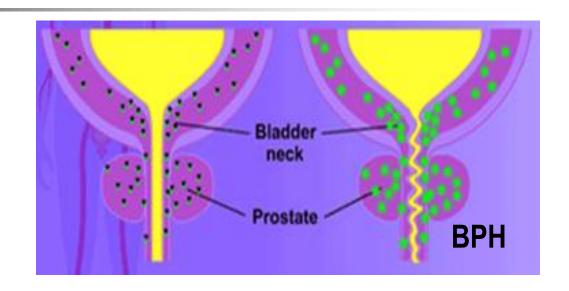
- Vasodilatation due to relaxation of arterial and venous smooth muscles
- Fall in arterial pressure
- less reflex tachycardia than with non-selective α blockers

Therapeutic Uses:

- Treatment of essential hypertension
- Urinary obstruction of benign prostatic

hypertrophy (BPH).

Raynaud's disease.


Selective α_{1A} —antagonists Tamsulosin

- * Is a selective α_{1A} antagonist.
- *** Tamsulosin produce:** relaxation of smooth muscles of bladder neck & prostate →improve urine flow.
- * Has minimal effect on blood pressure.
- * Tamsulosin is used in the treatment of benign prostatic hypertrophy (BPH).

Tamsulosin

Relaxation of bladder neck can improve urine flow

Adverse effects of α 1A- Antagonists

as before with non selective but to a lesser degree

α_2 -selective antagonists

- e.g. yohimbine
- Used as aphrodisiac in the treatment of erectile dysfunction.
- Increase nitric oxide released in the corpus cavernosum thus producing vasodilator action and contributing to the erectile process.