

Editing File

Adrenergic Antagonists

Objectives:

- Describe the different classifications for drugs that can block sympathetic nervous system.
- Describe the kinetics, dynamics, uses and side effects of alpha adrenergic drugs.
- Identify Difference between selective and non selective alpha blockers.
- Know the difference between tamsulosin and other selective alpha receptor blockers.
- Identify the different classifications for beta receptors blockers.
- Describe the kinetics, dynamics, uses and side effects of beta adrenergic drugs.
- Know the preferable drug for diseases as hypertension, glaucoma, arrythmia, myocardial infarction, anxiety, migraine and ect....

Review:)

Actions of Adrenergic Receptors

α ₁	ℓ ℓ ₂	β 1	β ₂		β ₃
Post- synaptic	Pre- synaptic	Post- synaptic	Post- synaptic	Pre- synaptic	Post- synaptic
found in smooth muscle	-	found in heart & JG cells in kidney	found in smooth muscle	-	found in adipose tissue
excitatory (except GIT)	inhibition of NE (-ve feedbac k)	excitatory	inhibitory	↑release of NE (+ve feedbac k)	-
Contraction of: -radial eye muscle -pregnant uterus. -vasoconstricti on of skin & peripheral blood vessels(hyper- tension) -sphincters in GIT & urinary bladder. -Relaxation of GIT muscles ↑Glycogenolysi s		 -↑ heart rate: + chronotropic effect, Tachycardia. -↑ force of contraction : + inotropic effect, arrhythmia. -↑ conduction velocity: + dromotropic effect. -↑ blood pressure. -↑ renin release. 	Relaxation of: -skeletal & coronary blood vessels (vasodilatation) - bronchial smooth muscles. -GIT muscles (constipation). -urinary bladder. -uterus (Delay premature labor) -Increase blood glucose level (hyperglycemia). -Tremor of skeletal muscles.		↑lipolysis ↑ free fatty acids.

If you know it skip it...

Review :)

If you know it skip it...

Adrenergic Drugs

Adrenergic Stimulants (Sympathomimetics) Adrenergic Depressants (Sympatholytics)

Adrenergic Receptor Blockers

Alpha - Adrenergic Receptor Blockers

Beta - Adrenergic Receptor Blockers

Alpha & Beta - Adrenergic Receptor Blockers Adrenergic Neuron Blockers

Formation of False Transmitters e.g. α-Methyl dopa

What should happen: Tyrosine turns to dopa turns to dopamine to NE, in this case we change the place of alpha methyl and نضحك عليهم (the receptors)

Depletion of Storage Sites e.g. Reserpine We inhibit the storage of the NE into the

ما عندنا مخزون vesicles

Inhibition of release & enhance uptake e.g. Guanethidine

Stimulation of presynaptic α₂ receptors(inhibit NE release) Inhibit sympathetic system e.g. Clonidine and α-Methyl dopa The only ones still used in the treatment of hypertension

Adrenergic Neuron Blockers

Drug	α-Methyl Dopa	Clonidine	Apraclonidine
Action	-Forms false transmitter that is released instead of NE -Centrally acting a2 adrenergic agonist that inhibits NE release - Centrally acting, crosses BBB and placenta.Safe to use by pregnant women	-Central a2 receptor agonist to inhibit NE release -Suppresses sympathetic outflow activity from the brain	Acts by decreasing aqueous humor formation. decreases I.O.P
Uses	Drug of choice in treatment of hypertension in pregnancy pre-eclampsia (condition of hypertension with impaired kidney function in pregnant women) gestational hypertension (hypertension only during period of pregnancy)	-Management of withdrawal symptoms of opiate treatment, alcohol withdrawal, benzodiazepines and nicotine dependence - Little use as antihypertensive agent due rebound hypertension upon abrupt withdrawal	Open angle glaucoma as eye drops.

Adrenergic receptor blockers

Classification of α-receptor Antagonists		
Non-selective antagonists	α ₁ -selective antagonists	Selective α ₂ - adrenoceptor antagonists
e.g. phenoxybenzamine & phentolamine.	e.g. prazosin, doxazosin, terazosin,tamsulosin.	e.g. yohimbine

Non-Selective α -Receptor Blockers

Drug	Phentolamine	Phenoxybenzamine	
MOA	Non-selective antagonists of both $\alpha 1 \& \alpha 2$ receptors.		
P.K	 Reversible block of both α1 & α2 receptors. (competitive inhibition) given IV Short acting (4 hrs) 	 Irreversible blocking of α1 & α2 receptors. (drug will make strong covalent bonds with receptor, non-competitive inhibition) Given Orally Long-acting (24 hrs) 	
Pharmacological actions	 They mostly affect blood pressure because they act on smooth muscle (endothelial cells of blood vessels) Decrease peripheral vascular resistance.(because of vasodilation) Postural hypotension.(Hypotension upon standing or movement اليدوخ اذا قام lncrease cardiac output (α₂ block). Reflex tachycardia (due to fall in B.P, mediated by baroreceptor reflex and due to block α₂ in heart). Vasodilation of blood vessels (α₁ block). Occurs by two mechanisms: 1) Stimulation of baroreceptor reflex that increase NE release. 2) α2 blockade in heart that abolishes presynaptic negative feedback for NE release. 		
Indication	• Before removal of Pheochromocytoma (tumor in the adrenal medulla that cause increase secretion of norepinephrine and epinephrine) to prevent Hypertensive Crisis. Patient will complain from symptoms as if taking adrenaline. (To memorize: Phentolamine, Phenoxybenzamine indicated for Pheochromocytoma)		
ADRs	 Headache vasodilation always causes headache Nasal stuffiness or congestion (remember no excitation for A1) Vertigo & drowsiness Male sexual dysfunction (Inhibits ejaculation) Tachycardia. Postural hypotension. 		
Contradiction	Both drugs can precipitate (-Patients with decreased co drugs will cause tachycardia = coronary perfusion.	cause) arrhythmias and angina. pronary perfusion. why? because these diastolic duration of the heart will $\downarrow = \downarrow$	

Selective $\alpha 1$ - adrenoceptor Antagonists

Drug	 α1-adrenoceptor Antagonists: Prazosin Doxazosin Terazosin 	
Р.К	 Prazosin has short half-life. Doxazosin, terazosin have long half lives. 	
MOA	Selective $\alpha 1$ -adrenoceptor Antagonists	
Effect	 Vasodilation due to relaxation of arterial and venous smooth muscles. Fall in arterial pressure with less reflex tachycardia than with non-selective α-blockers. 	
Indication	 blockers. Treatment of essential hypertension. (unknown cause) Urinary obstruction associated with benign prostatic hyperplasia (BPH) (it can be either hyperplasia or hypertrophy) The idea is to relax the smooth muscle which will relieve urinary retention Raynaud's disease (Vasospasm) causes some areas of your body such as your fingers and toes to feel numb and cold in response to cold temperatures or stress. Peripheral vascular disease 	

• Fall in arterial pressure with less reflex tachycardia than with non-selective α- blockers. why less tachycardia ??

non-selective a-blockers has two mechanism in tachycardia 1- it will block a1 receptor, so hypotension will occur and cause reflex tachycardia.

2- it will block a2 receptor, so that will increase NE release and affect the heart by binding to b1 receptor and cause more tachycardia.

Selective a1A & Selective a2 Antagonists

	Selective a1A	Selective a2
Drug	Tamsulosin(Uroselective)	Yohimbine(Yohimbe bark)
MOA	 Relaxation of smooth muscles of bladder neck & prostate → improve urine flow. The hypertrophy will compress the bladder neck so relaxation will allow urine to flow. Will allow urine to flow. Has minimal effect on blood pressure. •α_{1A} receptors present in prostate and bladder neck. 	Increase nitric oxide "NO"released in the corpus cavernosum thus producing vasodilator action and contributing to the erectile process.
Indication	 Treatment of benign prostatic hypertrophy (BPH).(it can be either hyperplasia or hypertrophy) Help with the passage of kidney stones. 	Used as aphrodisiac* in the treatment of erectile dysfunction. *Aphrodisiac: a food, drink, or other thing that stimulates sexual desire.
ADRs	•As before with non selective but to a lesser degree. only on α1A receptor so will have less ADR.	

Classification of β Adrenoceptors Blockers

	1-According	to	
	Selectivity	/	
Non-Selective (block β1 and β2)	Selective (block β1))	Mixed (block α & β receptors)
Propranolol, Pindolol, Sotalol, Timolol (PST) (eye)	Atenolol, Acebutolol, Bisoprolol, Esmolol, Metoprolol	Car Lab	vedilol etalol
age Intri No ISA	2-According to pre onistic/antagonist nsic Sympathomin (ISA)	esence of ic action i.e netic Activity	With ISA
Atenolol, Bisoprolol, Metoprolol Propranolol Sotalol, Timolol, Carvedilol.		Whe able of n	Labetalol. en a drug has ISA it is to mimic the action orepinephrine and epinephrine
3-A mem	ccording to pre ibrane stabilizi	esence of ng effects	
Propranolol (Non sele Labetalol (α and	ective βblocker) βblocker)	i.e. I Qui Antiarrhyt will block i.e will giv	Block Na Channels nidine-like action hmic action. These dru the depolarizing proce ve local anesthetic drug

action

Pharmacokinetics of β-blockers:

Most of them are lipid soluble

- Lipid soluble β -blockers
- well absorbed orally.
- are rapidly distributed, cross readily BBB
- Have CNS depressant actions
- Metoprolol, propranolol, timolol, labetalol, carvedilol

Most of them metabolized in liver & excreted in urine.

Most of them have half-life from 3-10 hrs

Pharmacological actions of β–Adrenergic Blockers:

Cardiovascular System	Negative (inotropic,chronotropic,dromotropic) \rightarrow \downarrow Cardiac Output (lower blood pressure as a result.)	
Antianginal effects (ischemic heart disease)	 ↓ Heart rate (bradycardia). ↓ force of contraction→↓cardiac work ↓ Oxygen consumption due to bradycardia. 	Ischemic heart disease means no blood flow therefore no O2
Antiarrhythmic effects	\downarrow excitability, \downarrow automaticity & \downarrow conductivity (sympathetic blocking).	due to its
Blood vessels β ₂	↑peripheral resistance (PR) by blocking vasoe ↓ blood flow to organs → cold extremities and contraindicated in peripheral diseases like Ra why? because patients will already have vaso blocking β2 we will only make it worse. To tree	dilatory effect $β2$ d fatigue aynaud's disease constriction, by eat \rightarrow vasodilation
Blood pressure	Antihypertensive $\rightarrow \downarrow$ BP in hypertensive patients due to effects on: • Inhibiting heart properties $\rightarrow \downarrow$ cardiac output (β_1) • β Blockade \downarrow renin secretion \downarrow Ang II & aldosterone secretion(β_1) The inhibition of renin secretion is important because it is converted to angiotensin I then angiotensin II which is the most effective vasoconstrictor. It has direct constriction on smooth muscle (causing peripheral resistance), it goes to adrenal gland which makes Aldosterone causing water retention and Na reabsorption. This increases the blood pressure. This mechanism turns on during hypovolemic shock and bleeding. • Presynaptic inhibition of NE release from adrenergic nerves	
Respiratory tract β_2	• Bronchoconstriction so it is Contraindicated patients & COPD patients, in this case it is bet selective β_1 antagonist	l in asthmatic ter to give them a
Eye	↓ Aqueous humor production from ciliary body ↓ Reduce intraocular pressure (IOP) e.g. timolol as eye drops for glaucoma why eye drops? Because Timolol is nonselective so causes many ADRs therefore it is better to give it locally.	
Intestine	↑ Intestinal motility	
Metabolic effects	 Hypoglycemia by ↓ glycogenolysis in liver, ↓ in pancreas ↓ lipolysis in adipocytes Na+ retention secondary to ↓BP → ↓renal presponse reflex to the lowered blood pressure 	glucagon secretion erfusion This is a

Clinical Uses of β–receptor Blockers

	Hypertension: Propranolol, atenolol, bisoprolol Labetalol: α, β blockers in hypertensive pregnant & hypertensive crisis.
Cardiovascular disorders	Cardiac Arrhythmias: In supraventricular & ventricular arrhythmias. Bisoprolol(a selective B1) and carvedilol(Beta & alpha blocker) are preferred
	Angina pectoris: اقلل الشغل على القلب (reduce the load) ↓ heart rate, ↓ cardiac work & oxygen demand. ↓ the frequency of angina episodes. Reduces amount of blood flow to the chest
	<pre>Congestive heart failure: e.g. carvedilol: antioxidant and non selective α,B blocker -↓ myocardial remodeling &↓ risk of sudden death. During heart failure remodeling occurs which changes normal function of heart, so this drug will prevent it from happening.</pre>
	Myocardial infarction: Reduces the consequences Have cardioprotective effect ↓ infarct size ↓ morbidity & mortality which lead to ↓ myocardial O2 demand. Antiarrhythmic action. ↓ incidence of sudden death.
Pheochromocytoma	 used with α-blockers (never alone) why? If I close beta I will protect the heart, but alpha will still be open and NE can overstimulate it and cause severe vasoconstriction leading to hypertensive crisis which is severe shooting of BP. α-blockers lower the elevated blood pressure. β-blockers protect the heart from NE.
Chronic glaucoma	Timolol as eye drops
Hyperthyroidism (thyrotoxicosis)	Protect the heart against sympathetic overstimulation by thyroxine Controls symptoms; tachycardia, tremors, sweating. (+C.O)
Anxiety (Social and performance type)	Controls symptoms due to sympathetic system stimulation as tachycardia, tremors, sweating. e.g. Propranolol
Migraine	Prophylactic by ↓ episodes of chronic migraine ↓ catecholamine-induced vasodilatation in the brain vasculature Headaches caused by vasodilation, Beta blockers cause vasoconstriction. e.g. Propranolol

Adverse Effects of β- Adrenoceptors Blockers

β1- receptor	Bradycardia. Hypotension. Heart failure.
β2- receptor only occur with non-selective β-blockers	Hypoglycemia. Bronchoconstriction(asthma,emphysema). Cold extremities and intermittent claudication by vasoconstriction. Erectile dysfunction and impotence. Coronary spasm in variant angina patients.
All β- Adrenergic blockers	Mask hypoglycemic manifestations i.e tachycardia,sweating → COMA. Diabetics won't know they are hypoglycemic because the drug will hide usual symptoms such as tachycardia which is why it is important that diabetics on beta blockers are monitored to avoid complications that could lead to coma. Depression & hallucinations. Gastrointestinal disturbances. Sodium retention.
Precautions	Sudden stoppage will give rise to a withdrawal syndrome: -Rebound angina, arrhythmia, myocardial infarction & hypertension WHY? Up-regulation of β-receptors. -To prevent withdrawal manifestations —>drug withdrawn gradually. Withdrawal of beta blockers has similar effect of corticosteroids withdrawal

Intermittent Claudication

Peripheral artery disease that most commonly affects the legs, but other arteries may also be involved.

Symptoms: Leg pain with walking , resolves with rest.

Risk factors:

- Diabetes.
- Hypercholesterolemia.
- High blood pressure.

Contraindications of β- Adrenoceptors Blockers

β -Adrenergic blockers

Drug	Propranolol (is the chosen as prototype)
MOA	 Non-Selective Competitive Blocker of β1 & β2 Membrane stabilizing action/ quinidine-like /local anesthetic effect sedative actions /No ISA
Kinects	 Lipophilic, completely absorbed acts on CNS, sedative effect 70% destroyed during 1st pass hepatic metabolism, 90-95% protein bound cross BBB and excreted in urine Can be given p.o or parenteral
Dynamics	 β-blocking Effect: 1. Membrane Stabilization: Block Na channels → direct depressant to myocardium → has local anesthetic effect (anti-arrhythmic effects). 2. CNS Effect: Has sedative action ↓ tremors & anxiety → used to protect against social anxiety performance anxiety
Indications	 Hypertension Arrhythmias Angina Myocardial infarction Migraine [Prophylaxis] Pheochromocytoma; used with α-blockers (never alone) Chronic glaucoma Tremors Anxiety: (specially social & performance type) sedates them Hyperthyroidism

β–Adrenergic Blockers

Drug	Propranolol cont.
Actions	 Heart; by block β1 Inhibit heart properties → ↓ cardiac output Has anti-ischemic action → ↓ cardiac work + ↓ 02 consumption Has anti-arrhythmic effects → ↓ excitability, automaticity & conductivity + by membrane stabilizing activity BP; by block β1 & β2 Has antihypertensive action by→ Inhibiting heart properties → ↓ cardiac output B blockade : ↓ renin & RAAS system Presynaptic inhibition of NE release from adrenergic nerves Inhibiting sympathetic outflow in CNS Mainly by β2 blockade: Blood Vessels: Vasoconstriction → ↓ blood flow specially to muscles, other organs except brain cold extremities Bronchi: Bronchospasm specially in susceptible patients Intestine: ↑ Intestinal motility Metabolism: In pancreas:↓ Glycogenolysis → Hypoglycaemia In pancreas:↓ Lipolysis In skeletal muscles: ↓glycolysis On peripheral & central nervous systems: Has local anesthetic effect ↓ tremors & ↓ anxiety

Selective β1- receptor Blockers

- Selectivity present in low doses but is lost at high doses will have no change on glucose metabolism or beta 3(lipid profile).
- <u>no change in lipid or glucose</u> → Preferable in diabetics\Dyslipidemias.
- no bronchoconstriction → Preferable in patients with asthma and COPD
- no effect on peripheral resistance.

also preferable in :

- Raynaud's phenomenon & peripheral vascular disease (PVD).
- Variant Angina (coronary spasm).

α and β - Adrenoceptors Blockers

- \checkmark Non selective β blockers with concurrent α_1 blocking action.
- ✓ Produce peripheral vasodilation
- ✓ Decrease <u>blood pressure</u>

✓ Used in the treatment of hypertensive emergencies as they can rapidly lower BP. Very fast acting thats why used in emergencies eg: Labetalol and Carvedilol

Drug	Labetalol	Carvedilol		
P.K	 Do not alter serum lipids or blood glucose. given p.o and i.v 	 Favorable metabolic profile. 		
MOA	 Rapid acting non-selective α₁ & β blocker . <u>has</u> ISA and local anesthetic effect. 	 Non-selective α₁ & β Blocker <u>no</u> ISA & no local anesthetic effect. has antioxidant action. 		
Indication	 Severe hypertension in pheochromocytoma. Hypertensive crisis (e.g. during abrupt withdrawal of clonidine). clonidine causes rebound hypertension in abrupt withdrawal pregnancy-induced hypertension .(alpha-methyl dopa for pre-eclampsia) 	 Used effectively in CONGESTIVE HEART FAILURE reverses its patho-physiological changes. 		
ADRs	Orthostatic hypotensionsedation and dizziness.	EdemaOrthostatic hypotension .		

Summary of β–Adrenergic blockers:

Uses	Drugs	
Hypertension	Atenolol, Bisoprolol, Metoprolol, Propranolol	
Cardiac arrhythmia	Esmolol <mark>(ultra-short acting)</mark> , Atenolol, Propranolol	
Congestive heart failure	Carvedilol, Bisoprolol, Metoprolol MBC	
Myocardial infarction	Atenolol, Metoprolol, Propranolol	
Glaucoma	Timolol	
Migraine prophylaxis	Propranolol	
Relief of anxiety (social & performance)	Propranolol	
Thyrotoxicosis	Propranolol	

Drug	MOA	Uses
Propranolol	Non selective β1, β2 blocker	Migraine prophylaxis Hyperthyroidism (thyrotoxicosis) Relieve anxiety (social performance)
Timolol	β1, β2 blocker	Glaucoma
Atenolol Bisoprolol Metoprolol	β1 blocker	Myocardial infarction Hypertension
Esmolol	β1 blocker Ultra short acting	Cardiac arrhythmia
Carvedilol	Non selective α , β blocker	Congestive heart failure
Labetalol	α, β blocker	Hypertension in pregnancy Hypertensive emergency

Adrenergic neuron blockers drugs work in the presynaptic neurons					
Drug	MOA	Uses			
α-Methyl Dopa	 1-Forms false transmitter that is released instead of NE. 2-Acts as central α2 receptor agonist to inhibit NE release 	- gestational hypertension - pre-eclampsia Treatment of hypertension in pregnancy			
Clonidine	 1-Acts as central α2 receptor agonist to inhibit NE release. 2-suppresses sympathetic outflow activity from the brain. 	Little used as antihypertensive agent due to rebound hypertension upon abrupt withdrawal.			
Apraclonidine	acts by decreasing aqueous humor formation.	in open angle glaucoma as eye drops.			
Reserpine	Depletion of storage sites	-			
Guanethidine	Inhibition of release & enhance uptake	-			

Adrenergic Receptor Blockers

Drugs work postsynapticon the receptor

	Drug		Pharmacological actions	Therapeutic Uses	contra- indicated	Side effect
Non-selective antagonists	Phenoxy- benzamine	Irreversible block of α_1 and α_2 receptors Long-acting (24 hrs)	 Decrease peripheral vascular resistance Postural hypotension. Reflex tachycardia, due to the fall in B.P, mediated by baroreceptor reflex and due to block a₂ in heart. 	Pheochromocyto ma: given before surgical removal to protect against hypertensive crisis.	Both can precipitate arrhythmias and angina in patients with decreased coronary perfusion.	-Postural hypotension -Headache -Tachycardia -Vertigo & drowsiness -Nasal stuffiness or congestion -Male sexual dysfunction (inhibits ejaculation).
	Phentolamine	Reversible blocking of α ₁ &α ₂ receptors Short acting (4 hrs)				
a ₁ -selective antagonists	Prazosin	Short half-life	 -Vasodilatation due to relaxation of arterial and venous smooth muscles - Fall in arterial pressure less reflex tachycardia than with non-selective a blockers 	 Treatment of essential hypertension Urinary obstruction of benign prostatic hypertrophy (BPH). Raynaud's disease. 	-	-
	Doxazosin	Long half life			-	-
	Terazosin				-	-
Selective a _{1A} –antagonists	Tamsulosin	-	 Relaxation of smooth muscles of bladder neck & prostate →improve urine flow. Has minimal effect on blood pressure. 	is used in the treatment of benign prostatic hypertrophy (BPH).	-	as non- selective but to a lesser degree
a ₂ -selective antagonists	Yohimbine	-	Increase nitric oxide released in the corpus cavernosum thus producing vasodilator action and contributing to the erectile process.	Used as aphrodisiac in the treatment of erectile dysfunction.	-	-

Questions

MCQs:

1- A 67 year old man with history of Angina and hypertension presented to the ER with tachycardia. Which of the following drugs should be prescribed to him:

- A) Phenoxybenzamine
- B) Doxazosin
- C) Clonidine
- D) Yohimbine

3- A 32 year old man presented to the ER with hypertension and was prescribed treatment. He later returned to the ER complaining of sexual dysfunction. Which of the following was prescribed:

- A) Yohimbine
- B) Clonidine
- C) α-Methyl dopa
- D) Phenoxybenzamine

2- A 27 year old smoker with Anxiety disorder presented to the ER with symptoms of withdrawal. He was previously prescribed benzodiazepines as treatment for Anxiety. Which of the following is the drug of choice:

- A) Clonidine
- B) Apraclonidine
- C) α-Methyl dopa
- D) Reserpine

4- A 56 year old man with hypertension complained of urinary hesitancy. He was diagnosed with Benign Prostatic Hypertrophy. Which of the following is the drug of choice:

- A) Tamsulosin
- B) Yohimbine
- C) Doxazosin
- D) Phentolamine

Questions

MCQs:

5- Which of the following is used to treat erectile dysfunction:

- A) Tamsulosin
- B) Yohimbine
- C) Doxazosin
- D) Phentolamine

6- Which can be used to treat Raynaud's disease:

- A) Non-Selective α Adrenoceptor Antagonists
- B) Selective α1- adrenoceptor Antagonists
- C) Selective α2- adrenoceptor Antagonists
- D) Selective α1Aadrenoceptor Antagonist

7- Patient with glaucoma, which of the following drugs is used in the treatment of glaucoma?

- A) Atropine.
- B) Timolol.
- C) Tropicamide.
- D) Propranolol

8-Pregnant woman with hypertension, what is the best choice to treat her high blood pressure?

- A) Labetalol.
- B) Propranolol.
- C) Timolol.
- D) Atenolol

9-Which one of the following beta blockers can be used for migraine prophylaxis ?

- A) Propranolol.
- B) Timolol.
- C) Carvedilol.
- D) Esmolol

10-Which of the following is not a clinical use of β-receptor Blockers?

- A) Hypotension
- B) Arrhythmia
- C) Angina pectoris
- D) Myocardial infarction

11- A 49 years old diabetic patient was brought to the emergency because he is in hypoglycemia coma, after taking history the patient is diabetic and has hypertension and the doctor prescribe to him a drug for his hypertension, what is the most likely drug the doctor prescribed ?

- A) Atenolol.
- B) Metoprolol.
- C) Propranolol.
- D) Bisoprolol.

5- B 6- B 7-B 7-A 8-A 9-A 9-A 9-A 10-A

Questions

SAQ:

- A pregnant woman was diagnosed with Gestational Hypertension. What is the drug of choice and its mechanism of action?
 - 1) α-Methyl dopa
 - 2) It is a centrally acting $\alpha 2$ adrenergic agonist that inhibits the release of NE by forming <u>false transmitters</u>
- A former alcoholic presented with symptoms of withdrawal. What is the drug of choice and its mechanism of action?
 - 1) Clonidine
 - Acts as α-2 receptor agonist to inhibit NE release and suppresses sympathetic outflow activity from the brain.
- A 55 years old diabetic patient was brought to the emergency because he is in hypoglycemia coma, after taking history the patient is diabetic and has hypertension and the doctor prescribed to him a drug for his hypertension What is the most likely drug the doctor prescribed in this case and What is the mechanism of action of this drug ?
- 1) Propranolol or any Non-selective B
- 2) Block all type of beta receptor (B1 & B2 & B3).

What are the 3 mechanism in which beta blockers act as Antihypertensive drugs?

- 1) Decreasing cardiac output by blocking beta 1 in heart
- 2) inhibiting renins release and stopin RAAS therefore decreasing volume and blood pressure
- 3) Presynaptic inhibition of NE release from adrenergic nerves

"It is not hard, you just made it to the end!"

Team Leaders:

Hadeel Awartani

Yazeed Al-Harbi

Thanks for those who worked on this lecture:

Dana Al-Rasheed Ghadah Al-Muhanna Aljohara Al-Shunaifi Ghadah Al-Haidari Rotana Khateeb Rinad Al-Ghoraiby Sarah Al-Sultan Lujain Al-Zaid Alanoud Al-Mufarrej Rawan Al-Tamimi

Majd Al-Barrak Ghaida Al-Sanad Sarah Al-Kathiri Ghadah Al-Qarni Alanoud Al-Mansour Alanoud Al-Eissa Dana Al-Kady Khloud Al-Waheibi Maha Al-Amri Munira Al-Hadleg

Nouf Al-Otaibi Noura Al-Othaim Rahaf Al-Thunayan Shahad Al-Tayash Dimah Al-Araifi Fatimah Al-Bassam Hind Al-Orier Laila Al-Sabbagh

References:

Doctors' notes and slides

