

ACID-BASE BALANCE

Dr. Maha Saja MBBS, MSc Physiology, PhD

Contents

- What are acids and bases?
- What is meant by a weak and a strong acid or base?
- •
- What is the normal pH of body fluids?
- Why is it important to keep body fluid pH within certain limits?
- What are the body's defense mechanisms against changes in blood pH: body buffers, the lungs and the kidney.
- Understand the role of the kidney in regulating pH of body fluids.
- Acid-base disturbances.

Acid-Base Balance

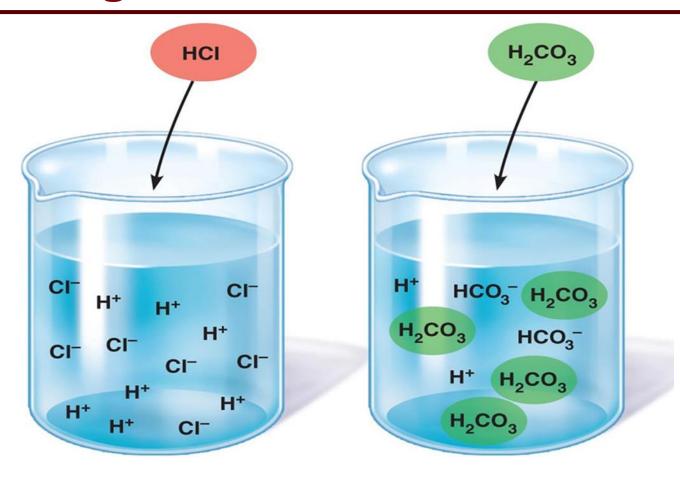
- Acid-base balance is concerned with the precise regulation of free (unbound) hydrogen ion (H⁺) concentration in body fluids.
- Normally, [H+] = 0.00004 mEq/L (40 nEq/L).
- Why is it important to control [H+]?

Why Should [H+] be Tightly Controlled?

 Slight deviations in [H+] have profound effects on enzyme and protein activity and thus the body's metabolic activity in general.

Changes in [H+] affects K+ levels in the body.

Why is the Body's [H+] Constantly Changing?


A number of processes can alter [H+] concentration in the body, such as;

- 1. Metabolism of ingested food.
- 2. GI secretions.
- Generation of acids & bases from amino acid/protein metabolism.
- 4. Changes in CO₂ production.

Acid-Base Fundamentals

- An Acid = a molecule that can release H⁺ in a solution.
 - H2CO3 (carbonic acid)
 - HCI (hydrochloric acid)
- A base = a molecule that accepts H⁺ in a solution.
 - Bicarbonate ions (HCO₃⁻).
 - Hydrogen phosphate (HPO₄-2)
- What is the difference between carbonic & hydrochloric acid?

Strong vs Weak Acids & Bases

Strong acids dissociate rapidly and release large amounts of H⁺ in solution

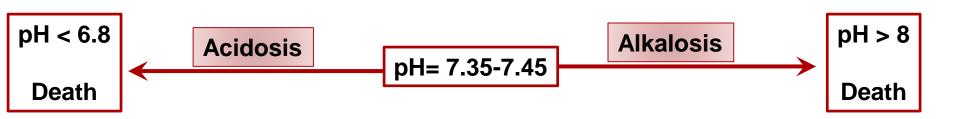
Weak acids dissociate incompletely and less strongly releasing small amounts of H+ in solution

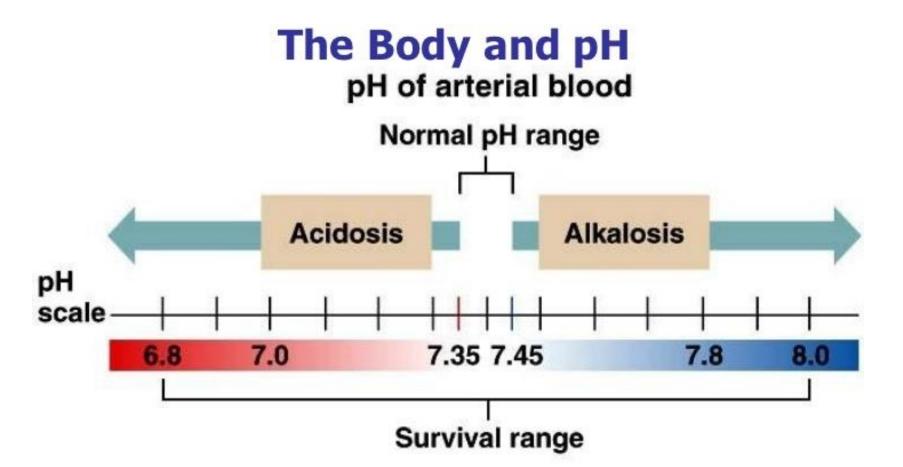
Weak Acids

$$AH \leftrightarrow A^- + H^+$$

 $Acid \leftrightarrow Conjugate \ base + H^+$

The extent to which a given acid dissociates in solution is constant. And is known as the *dissociation constant (K)*.


$$K = \frac{[H^+][A^-]}{[AH]}$$


$$H_2CO_3 \leftrightarrow HCO_3 - + H^+ \longrightarrow K = \frac{[H^+][HCO_3^-]}{[H_2CO_3]}$$

[H⁺] & the pH

- H+ ion concentrations are expressed as pH.
- pH = Log [H+]
 - If the [H+] increase → pH will decrease (more acidic)
 - If the [H⁺] decrease → pH will increase (more alkaline)
- What is the normal pH of the ECF?

Normally pH= 7.35-7.45

pH and H⁺ Concentration of Body Fluids

	[H ⁺] (mEq/L)	рН
Extracellular fluid		
Arterial blood	4.0 X 10 ⁻⁵	7.4
Venous blood	4.5 X 10 ⁻⁵	7.35
IF	4.5 X 10 ⁻⁵	7.35
Intracellular fluid	1 X 10 ⁻³ to 4 X 10 ⁻⁵	6-7.4
Urine	3 X 10 ⁻² to 1 X 10 ⁻⁵	4.5-8
Gastric HCI	160	0.8

Acid Production by the Body

- The body produces large amounts of acids on daily basis as by products of metabolism.
 - Metabolism of dietary proteins.
 - Anaerobic metabolism of carbs and fat.
- Acids in the body are of two kinds:
 - 1. Volatile (CO₂)
 - Non-volatile "fixed" (sulfuric acid, lactic acid) (daily acid load ≈ 50-100 mEq/day) (0.8 mEq/kg/d).

The Body's Defense Against Changes in [H+]

Three main systems:

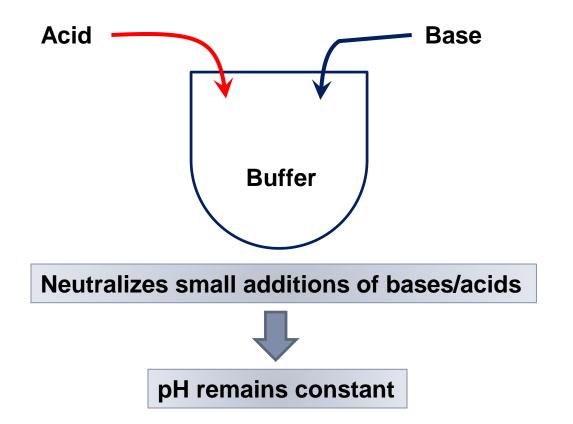
1. Body fluid buffers.

Works within seconds.

2. Lungs

Works within minutes.

3. Kidneys


Works within hours-days.

The most powerful of the three.

BODY FLUID BUFFERS

What is a Buffer?

A buffer = a solution that resists changes in pH upon addition of small amount of acids or bases.

How do Buffers work?

- A buffer is a mixture of a weak acid and a weak base that are in equilibrium.
- To be more accurate, its either made of:
 - A weak acid and its conjugated base (H₂CO₃ & NaHCO₃-).
 - A weak base and its conjugated acid (NH₃ & NH₄+).
- How does a buffer do its job?

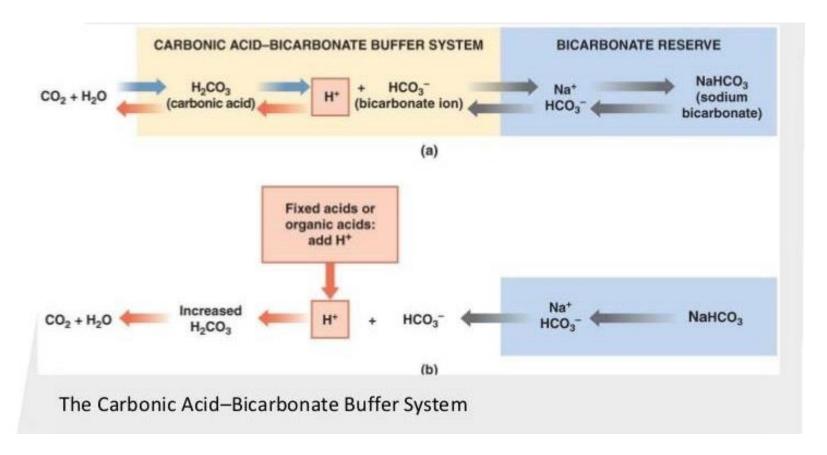
Chemical Buffer Systems in the Body

- There are 3 chemical buffers in the body;
- 1. The Bicarbonate buffer system.
- 2. The phosphate buffer system.
- Proteins.
- They are the 1st line of defence against changes in pH i.e. [H⁺], act within seconds.
- Some are more powerful extracellularly and others are more powerful intracellularly.

- Composed of:
 - A weak acid (H2CO3).
 - Its conjugated base (NaHCO₃).

$$CO_2 + H_2O \xrightarrow{CA} H_2CO_3 \longleftrightarrow H^+ + HCO_3^-$$

1. H_2CO_3 forms in the body by the reaction of $CO_2 \& H_2O$


$$CO_2 + H_2O \xrightarrow{Carbonic anhydrase} H_2CO_3$$

2. H_2CO_3 ionizes weakly to form small amounts of H⁺ & HCO_3^-

$$H_2CO_3 \leftarrow \rightarrow H^+ \& HCO_3^-$$

3. The second component is NaHCO₃ which dissociates to form Na⁺ & HCO₃⁻

Putting it all together;

This is the main ECF buffer system

What happens if you add a base or an acid to the system?

What is the HHE?

It is an equation that enables the calculation of pH of a solution.

What is it?

$$pH = pK + log \frac{HCO3^{-}}{0.03 X PCo_2}$$

K = dissociation constant, pK = 6.10.03 = solubility of CO₂

How was it derived?

$$H_2CO_3 \longrightarrow H^+ + HCO_3^-$$

H₂CO₃ and its dissociated ions are always in equilibrium
 → the products of the reaction on one side of the equation are proportional to the product on the other side.

$$[H_2CO_3] \alpha [H^+] X [HCO_3^-]$$

2. Since H₂CO₃ is a weak acid, it will not dissociate completely and the concentration of its products will depend on its dissociation constant (K)

$$K X [H_2CO_3] = [H^+] X [HCO_3^-]$$

 Based on the previous equation, [H+] can be expressed as follows;

$$[H^+] = K X \frac{[H_2CO_3]}{[HCO_3^-]}$$

4. Because H₂CO₃ can rapidly dissociate into CO₂ and H₂O. And since CO₂ is much easier to measure it can replace H₂CO₃ in the equation;

$$[H^+] = K X \frac{[Co_2]}{[HCO_3^-]} \longleftarrow \boxed{7}$$

This is Henderson's equation (1908)

```
It means that;

↑ [CO2] →↑ [H+]

↑ [HCO<sub>3</sub>-] → ↓ [H+]
```

5. In 1909, Sorensen created the pH scale to express [H+]

$$pH = -\log[H^+]$$

6. In 1916, Hasselbalch decided to merge Henderson's equation with Sorensen's pH scale creating what we now know as the "Henderson-Hasselbalch equation".

$$[H^+] = KX \frac{[Co_2]}{[HCO_3^-]} \longrightarrow -\log[H^+] = -\log\left(KX \frac{[CO2]}{[HCO3^-]}\right)$$

$$-\log[H^+] = -\log\left(KX\frac{[CO2]}{[HCO3]}\right)$$

$$pH = pK + \log \frac{[HCO3]}{[Co2]} \quad \longleftarrow$$

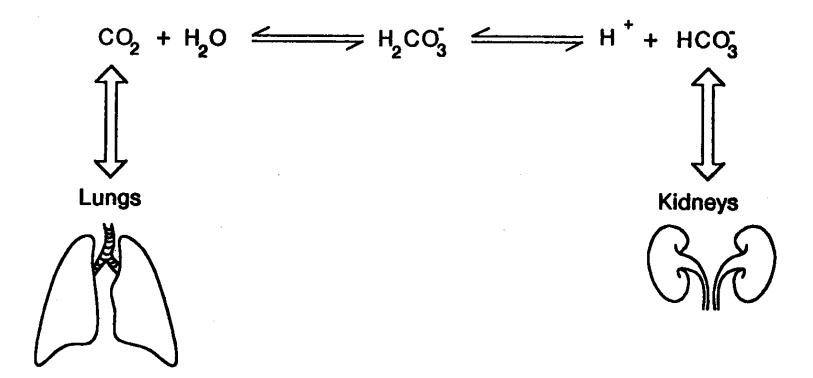
This is Henderson-Hasselbach equation (1908)

7. Since it is much easier to measure PCO₂ rather than dissolved [CO₂] and because dissolved CO₂ is proportional to PCO₂ multiplied by the solubility of CO₂ (0.03 mmol/mmHg) → [CO₂] was replaced by PCO₂ X 0.03

$$pH = pK + \log \frac{[HCO3]}{0.03 X PCO2}$$

$$CO_2 + H_2O \stackrel{CA}{\longleftrightarrow} H_2CO_3 \stackrel{+}{\longleftrightarrow} H^+ + HCO_3$$

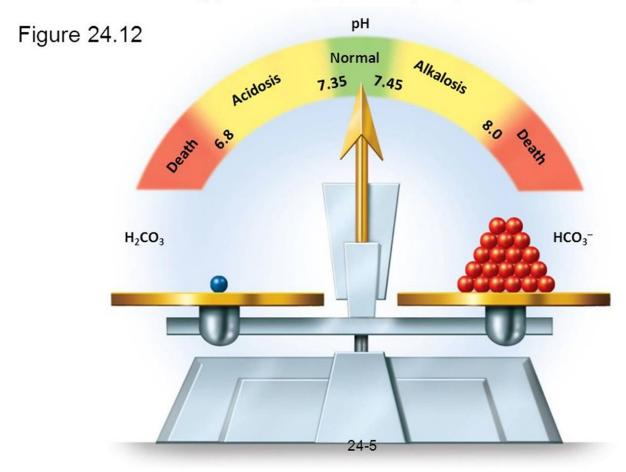
$$pH = pK + \log \frac{[HCO3^-]}{0.03 X PCO2}$$


What do we understand from this equation?

Each element of the buffer system is regulated

- ↑↑ HCO₃⁻ will ↑↑ pH
- ↑↑ PCO2 will ↓↓ pH

Summary of the Bicarbonate Buffer System


Why is it the most important buffer system in the ECF?

Ratio of
$$\frac{HCO3 - PCO2}$$
 is $\approx 20:1$

Acid-Base Balance

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Other Buffering Systems

The phosphate buffer:

- Plays a major role in buffering intracellular & renal tubular fluid.
- Composed of;
 - H₂PO₄ (dihydrogen phosphate)
 - HPO₄-2 (Hydrogen phosphate)

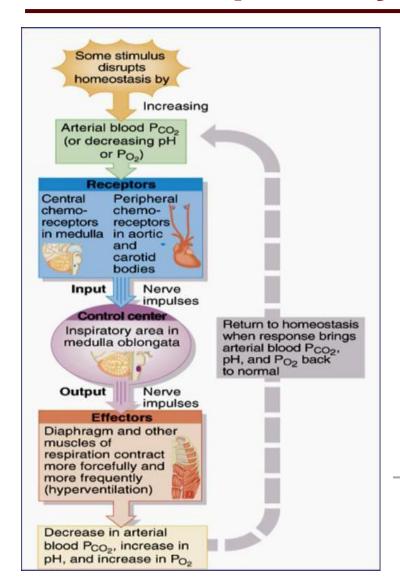
Proteins:

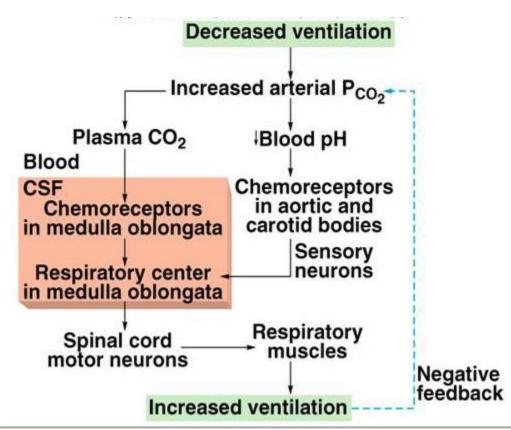
- Contributes to buffering inside cells.
- E.g. Hb.

Summary of Body's Buffering Systems

- Buffer systems do not work independently in body fluids but actually work together.
- A change in the balance in one buffer system, changes the balance of the other systems.
- Buffers do not reverse the pH change, they only limit it.
- Buffers do not correct changes in [H+] or [HCO₃-], they only limit the effect of change on body pH until their concentration is properly adjusted by either the lungs or the kidney.

RESPIRATORY REGULATION OF ACID-BASE BALANCE


Respiratory Regulation of A/B

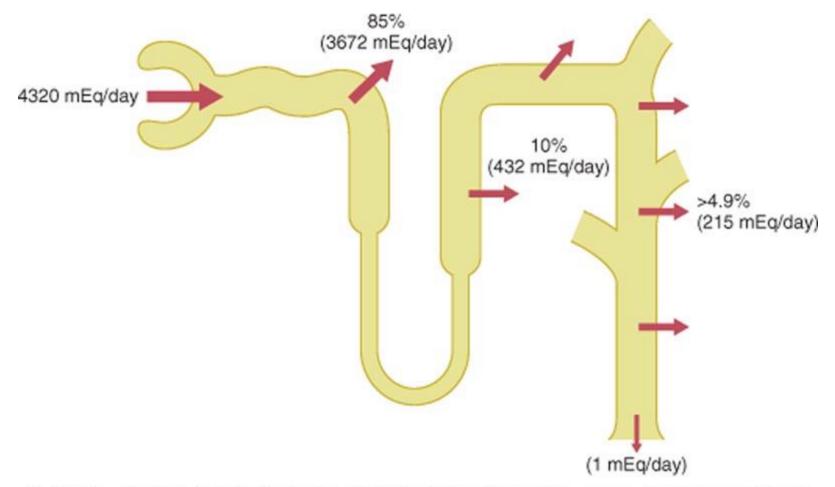

 2nd line of defence against acid-base disturbances in the body.

• **HOW?**

- By modulating CO₂ excretion.
- $\uparrow \uparrow$ [H⁺] $\rightarrow \uparrow \uparrow$ ventilation (RR) $\rightarrow \downarrow \downarrow$ PCO₂
- $\downarrow\downarrow$ [H+] $\rightarrow\downarrow\downarrow$ ventilation (RR) \rightarrow accumulation of CO₂ $\rightarrow\uparrow\uparrow$ PCO₂.
- Normally, PCO₂ = 40 mmHg (35-45 mmHg)

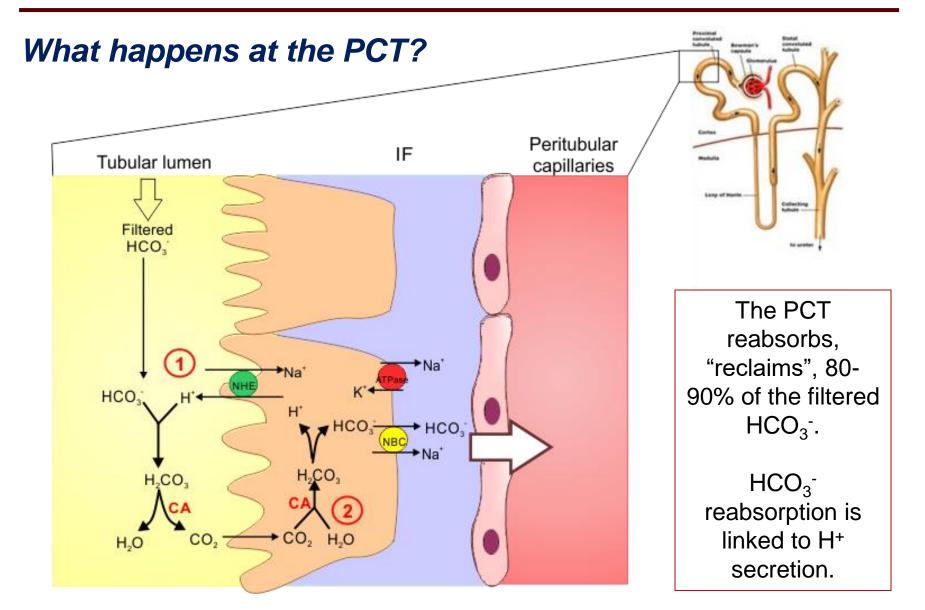
Respiratory Regulation of CO₂

RENAL REGULATION OF ACID-BASE BALANCE

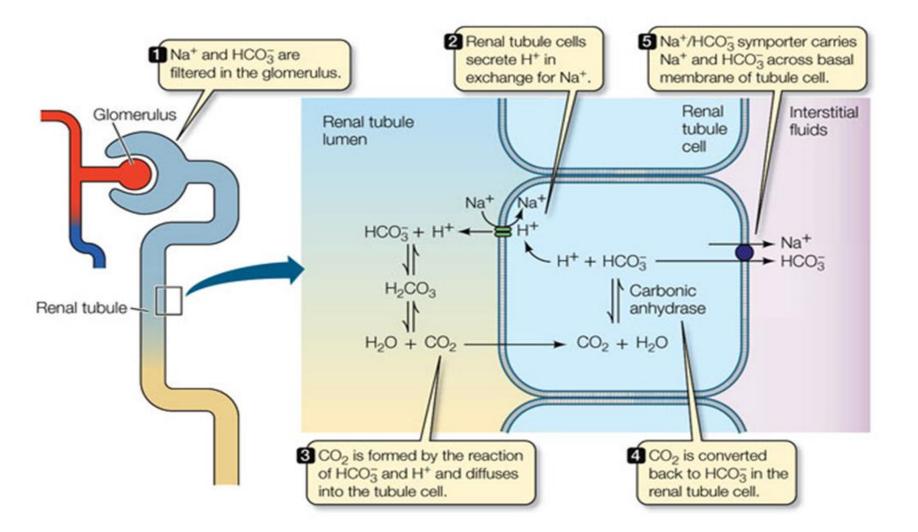

Renal Regulation of A/B Balance

- 3rd line of defence against acid-base disturbances and the most powerful.
- It regulates by excreting either an acidic or basic urine.

HOW?


- 1. Secreting H⁺
- 2. Reabsorbing HCO₃-
- 3. Generating "new" bicarbonate ions.

Overview HCO₃⁻ Reabsorption by the Renal Tubules

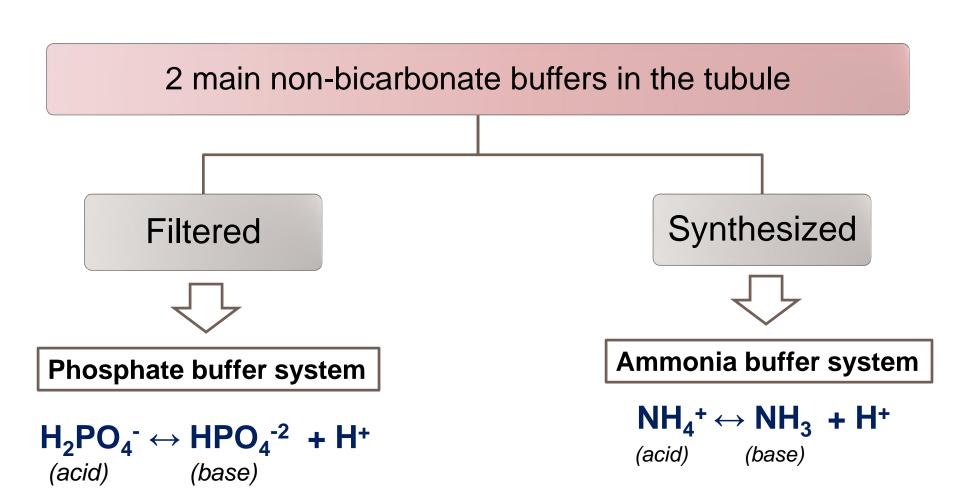


© Elsevier. Guyton & Hall: Textbook of Medical Physiology 11e - www.studentconsult.com

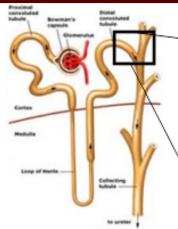
How is HCO₃- Reabsorbed by the tubules?

HCO₃- Reabsorption by the PCT

What happens at the DCT & CT?

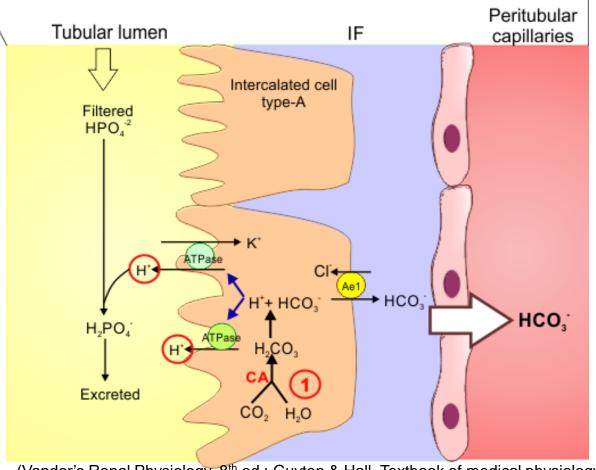


What happens at the late DCT & CT?


- The filtrate arriving at the DCT & CT is low in HCO₃⁻.
- The distal segments of the nephron are characterised by the presence of "intercalated cells" capable of actively secreting H+ through H+-ATPase and H+-K+ ATPase present on their apical membrane (Type-A intercalated cells).
- Only a limited number of H⁺ can be excreted in its free form in urine.
- Lowest possible urine pH=4.5 → ≈ 0.04 mmol/L of free H⁺.
- How does the kidney excrete the extra H⁺?

Non-Bicarbonate Buffers in the Tubular Lumen?

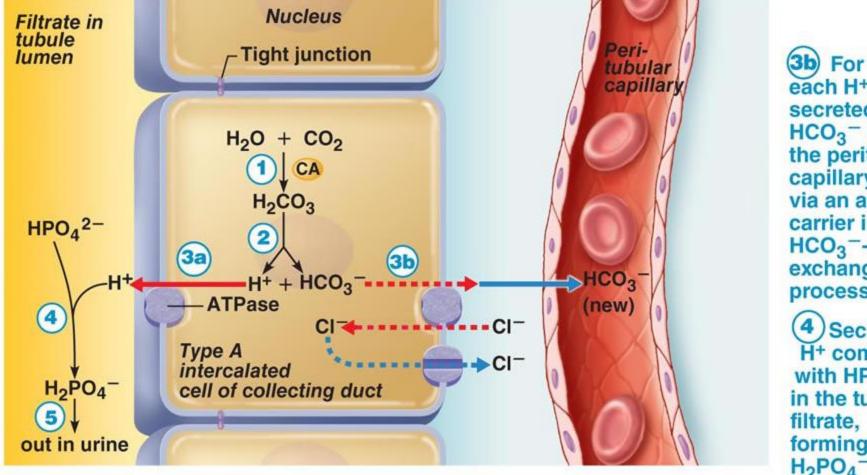
The extra H⁺ secreted will need to be buffered in the tubular lumen



Excretion of H⁺ and Generation of New HCO₃⁻

The phosphate buffer system

phosphate is capable of handling a limited amount of H+ and will not be enough to rid the body of its daily acid load nor if there is unusually high acid production.



(Vander's Renal Physiology. 8th ed; Guyton & Hall. Textbook of medical physiology. 13th ed.)

1) CO₂ combines with water within the type A intercalated cell, forming H2CO3.

2) H₂CO₃ is quickly split, forming H+ and bicarbonate ion $(HCO_3^-).$

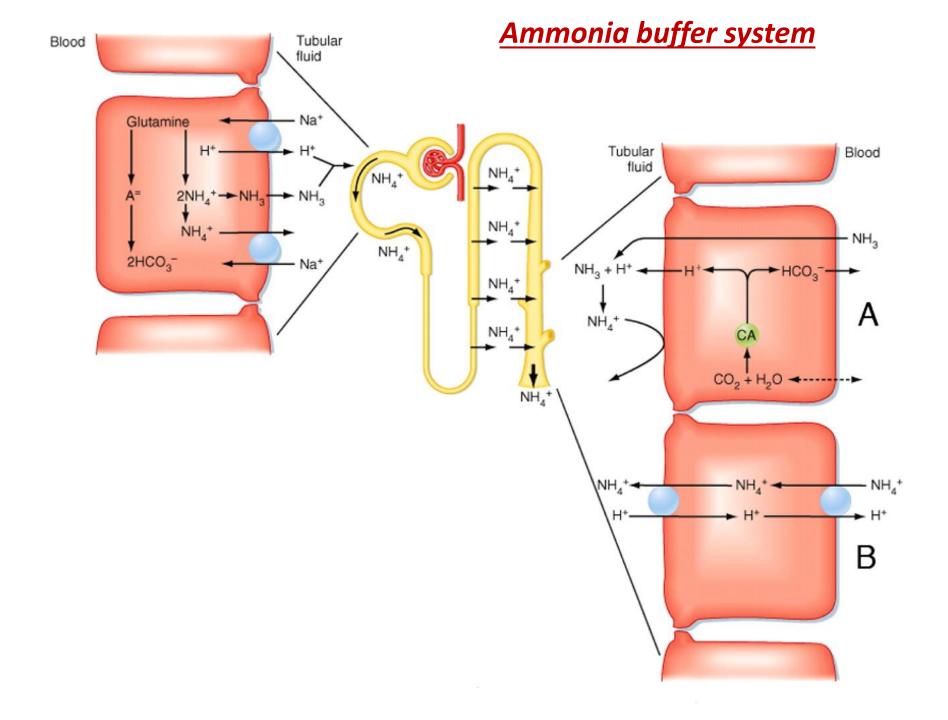
3a) H+ is secreted into the filtrate by a H+ ATPase pump.

each H+ secreted, a HCO₃⁻ enters the peritubular capillary blood via an antiport carrier in a HCO3--CIexchange process.

4) Secreted H+ combines with HPO₄2− in the tubular filtrate, forming $H_2PO_4^-$.

The H₂PO₄ is excreted in the urine.

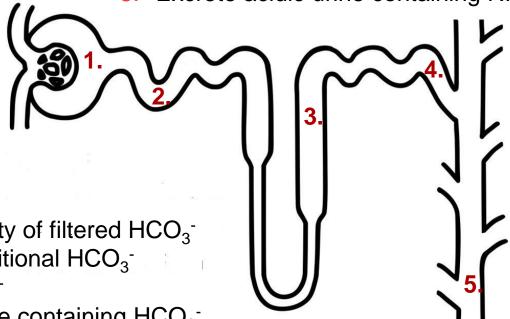
Primary active transport Secondary active transport


Ion channel Carbonic anhydrase

Transport protein

Simple diffusion Facilitated diffusion

Excretion of H⁺ and Generation of New HCO₃⁻ The Ammonia Buffer System


- Renal tubular cells, especially PCT, are capable of generating ammonium (NH₄+) "ammoniagenesis" which is then excreted in urine carrying with it H+.
- The rate of ammoniagenesis can be modified according to the needs of the body.
- Quantitatively, the ammonia buffer system is more important than the phosphate buffer system for H⁺ excretion in urine.
- It is the most important system in case of acidosis.

The Overall Scheme of Renal Excretion of Acids & Bases

To excrete acid:

- 1. Freely filter HCO₃-
- Reabsorb the majority of filtered HCO₃⁻
- 3. Reabsorb some additional HCO₃-
- Secrete H⁺ (titrate filtered bases, i.e. HPO₄⁻²) and secrete NH₄⁺
- 5. Excrete acidic urine containing NH₄+

To excrete base

- Freely filter HCO₃⁻
- 2. Reabsorb the majority of filtered HCO₃-
- 3. Reabsorb some additional HCO₃-
- 4. Secrete some HCO₃-
- Excrete alkaline urine containing HCO₃⁻

Factors Affecting H⁺ Secretion and HCO₃⁻ Reabsorption

Table 30-2

Factors That Increase or Decrease H⁺ Secretion and HCO₃⁻ Reabsorption by the Renal Tubules

Increase H⁺ Secretion and HCO₃⁻ Reabsorption

- ↑ Pco₂
- ↑ H⁺, ↓ HCO₃⁻
- ↓ Extracellular fluid volume
- ↑ Angiotensin II
- ↑ Aldosterone

Hypokalemia

Decrease H⁺ Secretion and HCO₃⁻ Reabsorption

- ↓ Pco₂
- $\downarrow \text{H}^+, \uparrow \text{HCO}_3^-$
- ↑ Extracellular fluid volume
- ↓ Angiotensin II
- ↓ Aldosterone

Hyperkalemia

THANK YOU