

Renal Block

Team 437 Radiology of the renal system

Important Doctor's notes Extra explanation

Objectives:

- Modality used for assessment of the urinary system
 - X-ray
 - □ US
 - □ CT
 - □ MRI
 - Nuclear
- Normal anatomy
- Common pathologies
 - Kidney
 - Ureter
 - Bladder
 - Urethra

Modalities used

Ultrasound

Image Key: White = stones and calcification. Grey = soft tissue. Black = fluid.

Radiology Team 437

-**Ultrasound**: Sound waves that reflect off dense surfaces, giving us a hyper–echoic view of the surface.

-Objects with less density appear in gray such as sub tissue -Fluids such as water and urine will not reflect the sound wave -The renal pelvis appears white because it is filled with fat

Not commonly used on the renal system.

-you can tell if there is any stone or obstruction in the ureter

Radiology Team 437

-contrast is given Intravenously, and it ends up being excreted by the kidneys

СТ

Multi leveled X ray, which gives a more definitive and clearer images.

Pros (Advantages)

Quick

A lot of information(can view small structures in the kidney).

Cons (Disadvantages)

Ionizing radiation

Expensive

Image key: same as X ray White = bones and calcification. Grey = soft tissue. Black = air.

MRI

Stands for (<u>Magnetic Resonance Imaging</u>)

Pros (Advantages)

No ionizing radiation (uses magnetic fields).

A lot of information(can be used in pregnancy).

Cons (Disadvantages)

Time consuming

Expensive

Image key: White = high intensity. Grey to black = low intensity.

Nuclear scans

Pros (Advantages) assess the function

Cons (Disadvantages)

Time consuming

radioactive materials

-The patient is given radioactive materials which give off gamma rays, these rays can be detected by special cameras.

-This picture shows that the right kidney filtered the radioactive material while the left one did not.

Summary

	L
	Ň
1	€ _N i
l	Å
l	L
l	Å
l	
l	Å
l	L
l	Å
l	Lon
	Å
l	₽
l	Å
l	L
l	Ň
	Å

<u></u> 八

modality	US	X-ray	СТ	MRI	Nuclear
Pros	 No Ionized radiation. Cheep. Portable. 	 Cheep. Quick. 	 Quick. Gives lots of information. 	 No lonized radiation. Gives lots of information. 	 Assess the function.
Cons	 Operator dependent. Time consuming. 	 Ionized radiation. Not defective. 	 Expensive. Ionized radiation. 	 Expensive. Time consuming. 	 Time consuming. Radioactive materials.

-Ultrasound and MRI are the only ones with no ionizing radiation -Nuclear scan is the only one that can asses the function(not only the anatomic structure)

Urinary System Anatomy

L

L

Ŵ

€_{V∭}

Land

Ŵ

Radiology

€_∭

- Renal Cortex.
- Renai Permed or Medulia.
- Hilum or Pelvis.
- Ureter

Urinary bladder

-Black in Ultrasound(because it's fluid)

-We use it to asses the amount of urine in bladder

-Smooth muscle of the bladder

-Tumors will cause irregularities

Common Kidney Pathologies

Cysts: are sac-like structures that may be filled with gas, liquid, or solid materials.

It is benign, common and predominantly incidental.

Anechoic circular mass , clear borders.

-Here it's cyst not tumor, why? Because it has well demarcated fluid inside

Radiology Team 437

Hypo-dense clear border mass in right kidney.

• Radio-opaque (calcium , struvite)

(can be seen in X-RAY)

Struvite: (magnesium ammonium phosphate)

Radio-lucent (uric acid , cysteine)

(can't be seen in X-RAY)

The best modality for the diagnosis of renal stones is non-contrast CT

-Contrast CT will mask the stones because the whole area will become bright

-In the other hand non-contrast CT will only make the stones appear bright as you can see in the picture.

Stones

Uretropelvic junction.

-Here we have a stone in the Uretropelvic junction

Pelvic brim junction: intersection of iliac arteries and ureter

External iliac artery

Neck of bladd

Common Iliac artery

Empty bladder

Internal iliac artery

-Here we have a stone in the Pelvic brim junction

Hydronephrosis

-A block in the drainage of the renal system which causes the urine to accumulate in the renal pelvis.

-When there is a complete obstruction to the ureter by a stone , the kidney eventually fills with urine and become swollen along the ureter

-You can notice how the kidney pelvis is dilated or extended if you compare it to the normal ultrasound

Radiology Team 437

P 100% MI 0.94

Pyelonephritis

- It is the infection of the kidney.
- Acute pyelonephritis results from bacterial invasion of the renal parenchyma. Bacteria usually reach the kidney by ascending from the lower urinary tract.
- CT scan for a patient with pyelonephritis, we do it only if the patient doesn't respond to the treatment or he had a recurrent pyelonephritis.

End-stage renal disease (ESRD)

-ESRD causes Kidney atrophy

-In the picture below we can see atrophy in the left kidney

-The right kidney is trying to compensate, that's why it's hypertrophied

Radiology Team 437

Tumors

1-Benign most common type is angiomyolipoma.

2-Malignant most common type is renal cell carcinoma.

Congenital kidney diseases

Common Ureter and Urinary bladder Pathologies

Ureter pathology vesicoureteral reflux disease

-This disease characterized by backflow of the urine

-How do we diagnose it ? By giving the patient contrast , after that we will see it go from the ureter back to kidney

Cystitis

Image 1: an inflamed urinary bladder (thick surrounding walls).

Image 2: This bladder has gas bubbles that could be due to inflammation or infection from 'gas producing' bacteria.

Benign Prostate Hypertrophy

Urinary bladder pathologies

-Hypertrophied prostate causing the bladder to be compressed

Quiz

- 1)What modality is cheap and with no Ionized radiation?
- A- Ultrasound
- B- X-ray
- C- CT-scan
- D- MRI
- 2)What modality is used to assess the function?
- A- Nuclear scan
- B- X-ray
- C- MRI
- D- CT scan
- 3)What modality is used with a lot of information and no Ionized radiation?
- A- X-ray
- **B- Ultrasound**
- C- MRI
- D- CT scan
- 4)What type of stones we can see under X-ray?
- A- Radio-opaque
- **B- Radio-lucent**
- 5)What is the best modality used to diagnose renal stones?
- A- Contrast CT
- **B- Non-Contrast CT**
- 6)What is the most common type of benign and malignant kidney tumors?
- A- Transitional cell carcinoma/Renal cell carcinoma
- B- Angiomyolipoma/Renal cell carcinoma

THANK YOU For checking our work.

Contact us on:

Radiology437@gmail.com

Team Leaders:

Rawan Alharbi

Faisal Alqusaiyer

Team members:

Mohammad alasqah Abdullah alsergani Abdulrahaman Altalasi Abdullah Alomar **Abdullah Almeaither**

Mohannad alamri

Afnan almustafa

Revised by:

Homoud al zaid Adel alzahrani

