HUMAN GENETICS

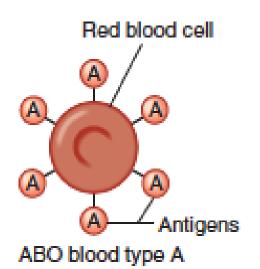
Lecture Four ATYPICAL MODE OF INHERITANCE

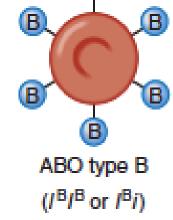
Objectives:

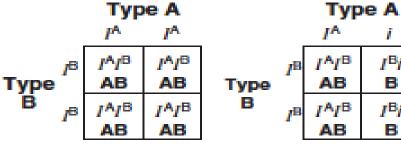
By the end of this lecture, students should understand atypical patterns of inheritance with special emphasis on:

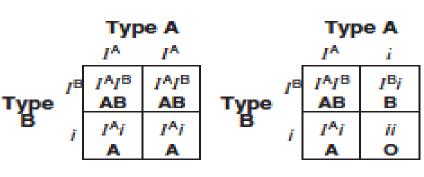
- 1. Codominant traits
- 2. Pseudodominant inheritance
- 3. The mitochondrial inheritance
- 4. Anticipation
- 5. Pleiotropy
- 6. Variable expressivity
- 7. Heterogeneity
- 8. New mutation
- 9. Complex trait: multifactorial/Polygenic

Codominant traits

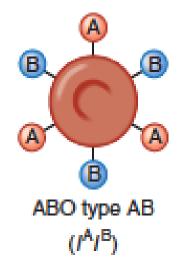

- This pattern occurs when the heterozygote expresses both alleles simultaneously without forming an intermediate phenotype.

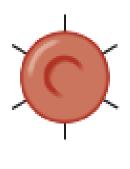

For example,


in blood typing, an individual carrying the A and B alleles has an AB blood type.


- most genes exist in multiple alleles

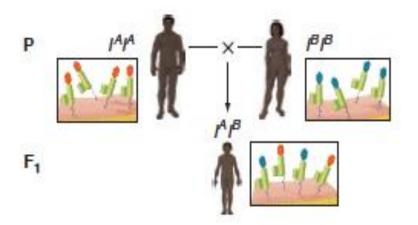
CODOMINANCE INHERITANCE




 $I^{B}I$

 $I^{B_{\tilde{I}}}$

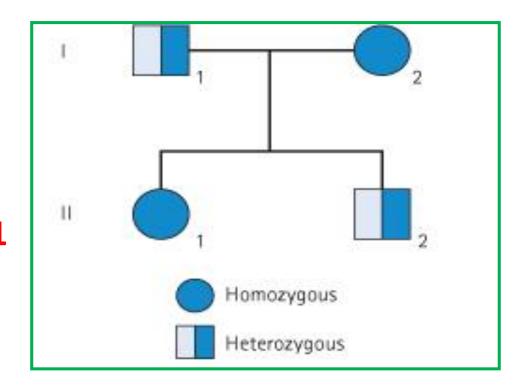
В



(IAIA or IAi)

ABO type O

(ii)

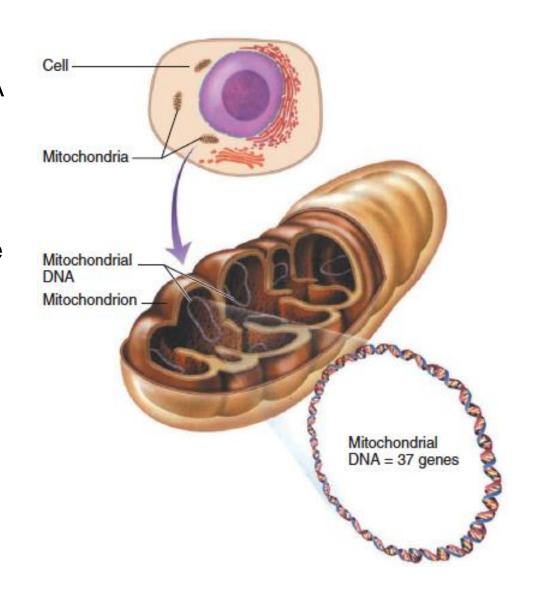


PSEUDODOMINANT INHERITANCE

is the situation in which the inheritance of a recessive trait mimics a dominant pattern.

Pedigree: Pseudodominant inheritance

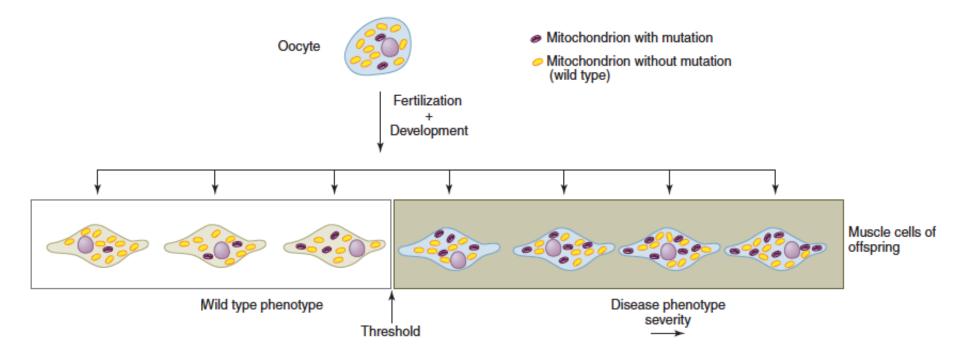
- A woman homozygous for an autosomal recessive disorder whose husband is heterozygous for the same disorder.
- Their children have a 1 in 2 (50%) chance of being affected (homozygous) i.e. pseudodominant


Atypical inheritance of singlegene disorders

What are the situations in which the inheritance of single-gene disorders diverges from typical mendelian patterns?

- Maternal inheritance of mitochondrial mutations
- Anticipation
- Atypical presentation for Autosomal Dominant defects:
 - -Pleotropy
 - Variable expressivity
 - Reduced penetrance
 - -New mutation

MITOCHONDRIAL INHERITANCE


- Each cell contains thousands of copies of mitochondrial DNA with more being found in cells having high energy requirement (e.g. brain & muscle)
- Mitochondria (& their DNA) are inherited from the mother (through ova)
- mtDNA is a small circular double-stranded molecule containing 37 genes (coding for rRNA, tRNA, and some of the proteins of the mitochondrial electron transport chain)

Homoplasmy vs. Heteroplasmy

- Homoplasmy = normally the mtDNA from different mitochondria is almost identical.
- Heteroplasmy = the presence of two populations of mtDNA in a cell; the normal mtDNA & the mutant mtDNA.
- The proportion of mutant mtDNA varies between cells & tissues → a range of phenotypic severity in mitochondrial inheritance.

Mitochondrial inheritance

- Mitochondria and their genes are passed only from the mother.
- Cells have many mitochondria. If an oocyte is heteroplasmic, differing numbers of copies of a mitochondrial mutation may be transmitted.
- The phenotype reflects the proportion of mitochondria bearing the mutation.
- Typical Example of Mitochondrial Disorders

Leber hereditary optic neuropathy (LHON)

Rapid Optic nerve death → blindness in young adult life

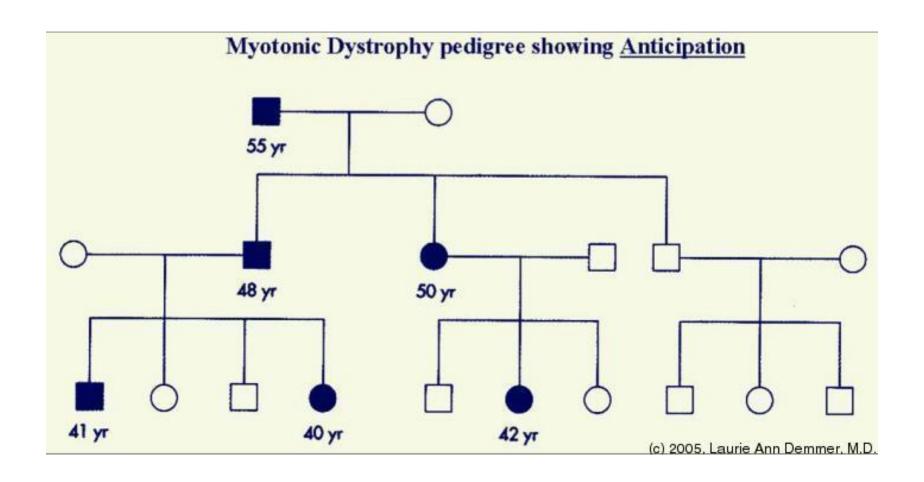
Mitochondrial inheritance

Males do not transmit the disease as the cytoplasm is inherited only from the mother since the mitochondria are present in the cytoplasm

Mitochondrial Unaffected Unaffected father mother father mother Affected children Unaffected children Unaffected

ANTICIPATION

- A pattern of inheritance in which individuals in the most recent generations of a pedigree develop a disease at an earlier age or with greater severity than do those in earlier generation.
- The reason might be the gradual expansion of trinucleotide repeat polymorphisms within or near a coding gene
- Examples of diseases showing anticipation:
 - Huntington disease Myotonic dystrophy


Myotonic Dystrophy

Number of

	Pedigree	Age of onset	Phenotype	copies of GAC mRNA repeat
1	1 2	Older adulthood	Mild forearm weakness, cataracts	50-80
П	1 2	Mid- adulthood	Moderate limb weakness	80–700
Ш		Childhood	Severe muscle impairment, respiratory distress, early death	700+

Pedigree analysis for Myotonic dystrophy

PLEIOTROPY

- A single-gene disorder with many symptoms, or a gene that controls several functions or has more than one effect, is termed *pleiotropic*.
- Causes autosomal dominant disorders
- Example:

tuberous sclerosis

affected individuals can present with either learning difficulties, Epilepsy, facial rashes, or all features

VARIABLE EXPRESSIVITY

The clinical features in autosomal dominant disorders can show striking variation from person to person, even in the same family.

Example:

Autosomal dominant polycystic kidney disease

some affected individuals develop *renal failure* in early adulthood

others have just a *few renal cysts* that do not significantly affect renal function

REDUCED PENETRANCE

- In some individuals heterozygous for gene mutations giving rise to certain autosomal dominant disorders there may be no abnormal clinical features, representing so-called reduced penetrance or 'skipping a generation'
- Reduced penetrance might be due to:
 - modifying effects of other genes
 - interaction of the gene with environmental factors

NEW MUTATIONS

- In autosomal dominant disorders an affected person will usually have an affected parent.
- However, this is not always the case and it is not unusual for a trait to appear in an individual when there is no family history of the disorder.
- The sudden unexpected appearance of a condition arising as a result of a mistake occurring in the transmission of a gene is called a new mutation.

Achondroplasia

 A form of short-limbed dwarfism, in which the parents usually have normal stature

Diagnosis/testing:

- Characteristic clinical and radiographic finding
- Molecular genetic tests: mutation in the FGFR3 gene on chromosome 4p16.3 (coding for fibroblast growth factor receptor 3)
- The offspring of persons with achondroplasia had a 50% chance of having achondroplasia
- What other possible explanations for the 'sudden' appearance of this disorder?
- non-penetrance: One of the parents might be heterozygous for the mutant allele but so mildly affected that it has not previously been detected
- Variable expressivity
- the family relationships not being as stated, e.g. non-paternity

Take home Messages:

- An accurate determination of the family pedigree is an important part of the workup of every patient
- Exceptions to Mendelian inheritance do occur in single-gene disorders.
- The inheritance pattern of an individual pedigree may be obscured by a number of other factors that may make the mode of inheritance difficult to interpret
- Some characteristics and many common familial disorders, do not usually follow a simple pattern of Mendelian inheritance.