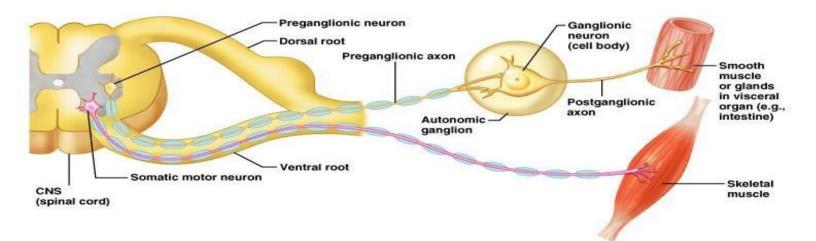


THE NERVOUS SYSTEM

- **INTRODUCTION**•
- The Central Nervous System (CNS): Includes the brain and spinal cord.
- The Peripheral Nervous System (PNS): Formed by eneurons & their process present in all the regions of the body.
 - It consists of cranial nerves arises from the brain & spinal nerves arising from the spinal cord.
 - The peripheral NS is divided into-
 - Somatic Nervous system-
 - Autonomic nervous system•

Functional Anatomy & Physiology of Autonomic NS

OBJECTIVES


Anatomy and physiology of Autonomic Nervous System

lectutre the At the end of this student should be able to:—
the anatomy of -appreciate sympathetic&
parasympathetic nervous
system.

physiological functions of -explain Sympathetic ¶sympathetic nerves in head&neck,chest,abdomen and pelvis

FUNCTIONAL ANATOMY OF THE AUTONOMIC NERVOUS SYSTEM

Basic anatomical difference between the motor pathways of the voluntary somatic nervous system (to skeletal muscles) and those of the autonomic nervous system

Basic anatomical difference between the motor pathways of the voluntary somatic nervous system⁸ (to skeletal muscles) and those of the autonomic nervous system

- Somatic division:▶
- Cell bodies of motor neurons reside in CNS ► (brain or spinal cord)
- Their axons (sheathed in spinal nerves) extend all

 the way to their skeletal muscles
- Autonomic system: chains of two motor neurons
 - 1st = preganglionic neuron (in brain or cord)▶
 - 2nd = gangionic neuron (cell body in ► ganglion outside CNS)

Visceral motor innervates non-skeletal ► (non-somatic) muscles

Composed of a special group of ► neurons serving:

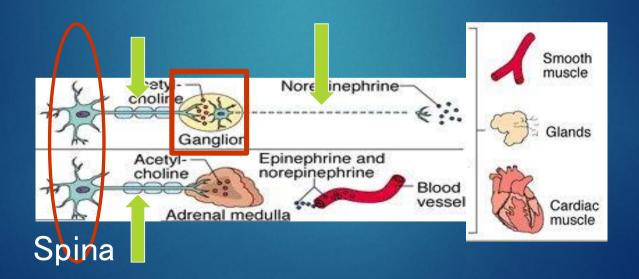
Cardiac muscle (the heart)▶

Smooth muscle (walls of viscera and ▶ blood vessels)

Internal organs

Skin▶

Higher control of the autonomic Nervous System

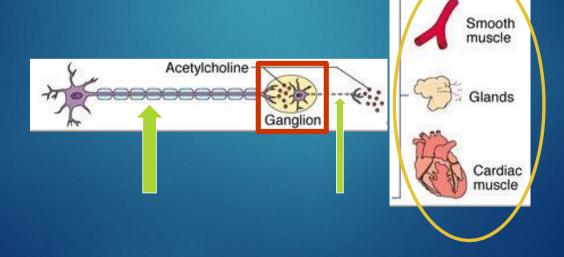

- **Sympathetic** NS is regulated by neurons in the **Posterior** part of the **hypothalamus**.
- Parasympathetic NS is regulated by neurons in the Anterior part of the hypothalamus.

Sympathetic Innervation of Visceral Targets

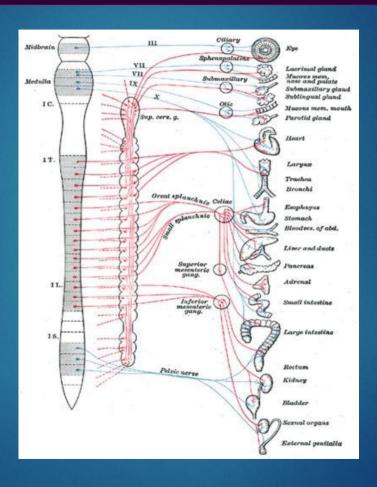
Short, lightly myelinated preganglionic neurons •

Long, unmyelinated postganglionic neurons •

Ganglia close to spinal cord▶



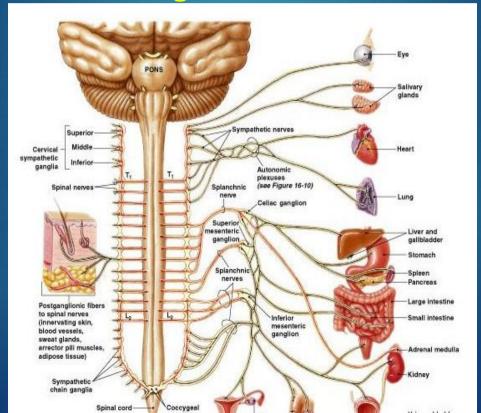
Parasympathetic Innervation of Visceral Targets


Ganglia close to or on target organs▶

Preganglionic neurons -long •

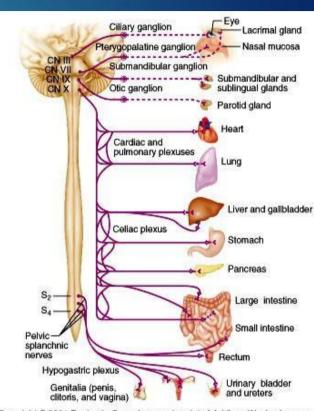
Post ganglionic neurons -short •

SYMPATHETIC & PARASYMPATHETIC NERVOUS SYSTEM ORIGIN



Blue= Para symp; Red symp

Sympathetic - Origin


Thoracolumbar lateral horns of the **printly** spinal segments T1-L2.

Nerve fibers originate between T1 & L2▶

Parasympathetic - Origin

- Craniosacral Cell bodies
 of the motor nuclei of the
 cranial nerves III, VII, IX
 and X in the brain stem
 Second, third and fourth
 [S2-S4] sacral segments of
 the spinal cord
 - Nerve fibers emerge from ▶ brain &
 - sacrum cranio- sacral outflow

Copyright @2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

THE AUTONOMIC **NERVOUS SYSTEM**

SubdivisioNerves E mployedn

Location of Ganglia

Chemical Messenger

General **Function**

Sympathe Thoracolumb Alongside vertebral tic ar column

Norepinephr Fight or flight ine

Parasymp Craniosacral athetic

e an effector organ

On or neaAcetylcholin Conservation of body energy

PHYSIOLOGICAL FUNCTIONS OF THE AUTONOMIC NERVOUS SYSTEM

The Autonomic Nervous System

Parasympathetic Stimulation Structure Sympathetic Stimulation

Iris (eye muscle)	Pupil con	Pupil constrictionPupil dilation	
Salivary	Saliva production	Saliva production increased	

Salivary	Saliva production	Saliva production in
Glands	reduced	Saliva production in

al Mucosa	Mucus production reduced	Mucus production increased
Heart	Heart rate and force	Heartrate and force decreased

increased and a lincreased and a second and a
 Due vale in la consola valenca il Due vale in la consola construa et a d

L ung	Bronchial	muscle relaxed	Bronchial	muscle contracted
Luily	Dionicinal	Triuscie relaxed	Dioliciliai	muscle contracted

The Autonomic Nervous System

Structure Parasympathetic StimulationSympathetic Stimulation

Stomach Peristalsis reduced Gastric juice secreted; motility increased

Small Intes Motility reduced Digestion increased

Large Intes Motility reduced Secretions and motility increased

L iver Increased conversion of glycogen to glucose

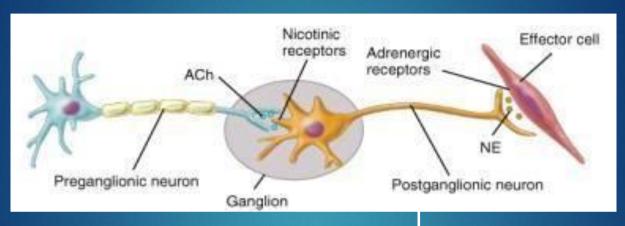
Kidney Decreased urine secretion Increased urine secretion

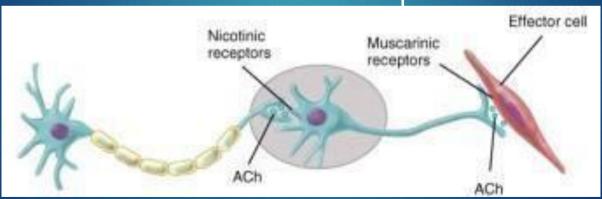
Adrenal Norepinephrine and medulla epinephrine secreted

Bladder

Wall relaxed Wall contracted Sphincter closed Sphincter relaxed

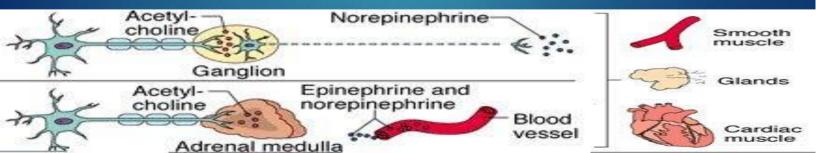
MECHANISM OF ACTIONS

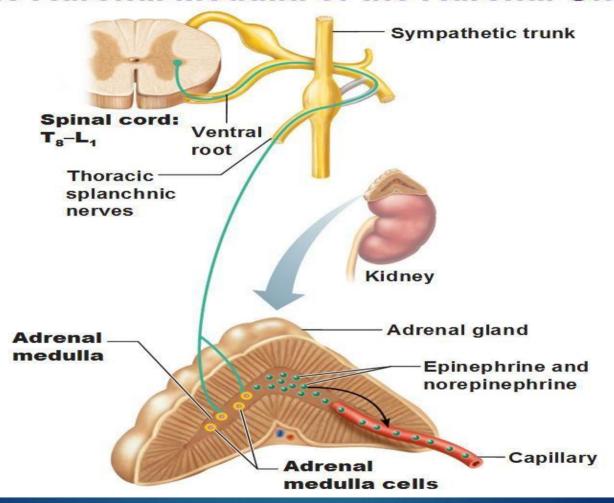

The neurotransmitters
& receptors of
Autonomic NS


OBJECTIVES

describe neurotransmitters that can release at pre and post ganglionic of Autonomic NS.

Describe Autonomic NS receptors.


ANS Neurotransmitters: Classified as either cholinergic or adrenergic neurons based upon the neurotransmitter released



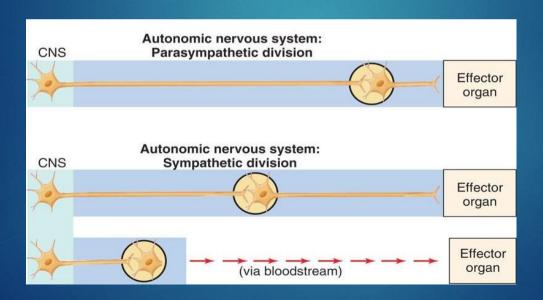
Sympathetic Neurotransmitters

- Preganglionic neurones
- Are Cholinergic = (release acetylcholine)
- Postganglionic neurons:
 - ► release norepinepherine at target Organs. All sympathetic postganglionic release noradrenalin except sweetglands & bl vessels to skeletal muscles

The Adrenal Medulla of the Adrenal Gland

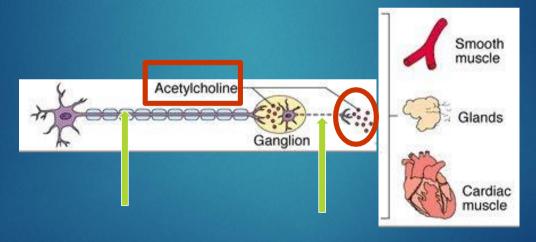
Response to adrenergic stimulation

The adrenergic neurotransmitters


Norepinepherine

From all post-ganglionic sympathetic nerve fibres except that for: Sweat glands, blood vessels of the skeletal muscles, piloerector muscl of hair cells Epinephrine
From adrenal medulla
which acts as modified
sympathetic ganglia

Autonomic nervous system: neurotransmitters


	preganglionic	postganglionic
parasympathetic	acetyl choline	acetyl choline
sympathetic	acetyl choline	norepinephrine*

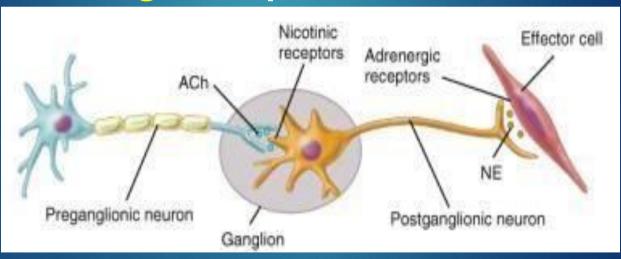
adrenal medulla: preganglionic –acetyl choline postganglionic (chromaffin cell) –80% epi, 20% norepi

Parasympathetic Neurotransmitters

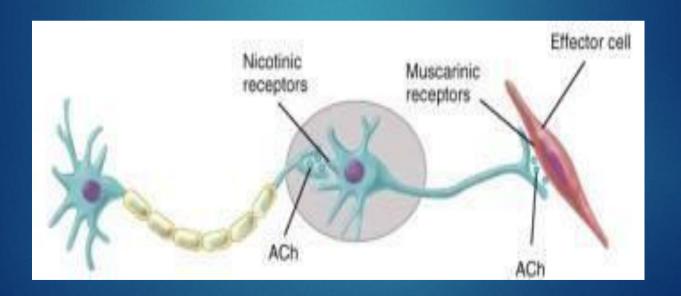
Pre & Postganglionic neurons release acetylcholine = Cholinergic

Chemical orneural transmitter

- All preganglionic fibers release acetylcholin (Ach).
- All parasympathetic postganglionic release Ach.
 - All sympathetic postganglionic release noradrenalin exceptsweat glands &bl vessels to skeletal muscles


RECEPTORS

autonomic preganglionicAll arereceptores nicotonic


of typestow on Acts NS Sympathetic The \square adrenergic receptors: α and β postganglionic

on Acts NS ParasympatheticThe muscrinic receptors postganglionic

Sympathetic Adrenergic Receptors

Parasympathetic muscarinic receptors

The Sympathetic NS Acts on tow types of receptors : α and β .

What do the receptors do?

Activation of α receptors leads to smooth muscle contraction

receptors leads to smooth muscle <u>relaxationActivation</u> of β

receptors leads to smooth muscle <u>Activation</u> of β contraction (especially in heart)

THARKYOU

