Dr. Nervana Mostafa

MB BS, MD, PhD (UK)

Associate Professor of Physiology

nbayoumy@ksu.edu.sa College of Medicine, KKUH, KSU

Body Fluids & Electrolytes

<u>objectives</u>

At the end of this session, the students should be able to:

- Identify and describe daily intake and output of water and maintenance of water balance.
- List and describe of body fluid compartments as intra-cellular fluid (ICF) Extra-cellular fluid (ECF), interstitial fluid, trans-cellular fluid and total body water (TBW).
- Describe the composition of each fluid compartment, in terms of volume and ions and represent them in graphic forms.
- Physiology factor influencing body fluid: age, sex, adipose tissue, etc. Pathological factors: Dehydration, fluid infusion.

• E.g.

- 70 kg man has 42 L of water.

– (Kg of water = L of water)

PERCENTAGE OF WATER IN THE BODY

FACTORS AFFECTING

Infant: 73%

Male adult: 60%

Female adult: 40-50%

Obesity

Old age 45%

Body Water Content

- Infants have low body fat, low bone mass, and are 73% or more water.
- Total water content declines throughout life.
- Healthy males are about 60% water; healthy females are around 50%
 - This difference reflects females':
 - Higher body fat
 - Smaller amount of skeletal muscle
- In old age, only about 45% of body weight is water.

Daily intake of water

TABLE 20-1 DAILY INTAKE AND OUTPUT OF WATER (in ml/day)			
	Normal	Prolonged, Hoavy Exercise	
Intake			
Fluids ingested	2100	2	
From metabolism	200	200	
Total intake	2300	?	
Output	ALL SALE		
Insensible-Skin	350	350	
Insensible-Lungs	350	650	
Sweat	100	5000	
Feces	100	100	
Urine	1400	500	
Total output	2300	6600	

Water Intake and Output

WATER TANK ANALOGY

Maintaining water homeostasis is a balancing act. The amount of water taken in must equal the amount of water lost.

Regulation of Water Intake

Climate

Habits

Level of physical activity.

Regulation of Water Intake

• The hypothalamic **<u>thirst center</u>** is stimulated:

By a decline in plasma volume of 10%–15%
By increases in plasma osmolality of 1–2%

In steady state water intake = water loss

Factors that affect the TBW

Physiological factors:

- Age
- Sex
- Body fat
- Climate
- Physical activity

Pathological factors:

- Vomiting
- Diarrhea
- Diseases with excessive loss of water (DM, excessive sweating,....
- Blood loss

Regulation of Fluid Balance

Water deficit

- Leads to:
 - Hypovolemia
 - Dehydration
- Physiologic regulation:
- 1. Activates hypothalamic thirst centre $\rightarrow \uparrow fluid$ intake

2. \uparrow ADH secretion by posterior pituitary \rightarrow \uparrow water reabsorption by the kidney.

Water excess

- Leads to:
 - Hypervolemia.
 - Edema.
- **Physiologic regulation:**
- ↓ ADH secretion → ↓
 water reabsorption →
 ↑ water excretion by
 kidney.
- 2. Decrease thirst

Fluid Compartments

• Water occupies two main fluid compartments:

- -Intracellular fluid (ICF)
- -Extracellular fluid (ECF)
 - Plasma
 - Interstitial fluid (IF)

Fluid Compartments

Guyton and Hall Textbook of Medical Physiology. 13th ed. Ch-25)

Intracellular fluid (ICF)

• Inside the cell.

• 2/3 of TBW.

• High concentration of protein.

Extracellular fluid (ECF)

Out side the cell.
 1/3 of <u>TBW</u>.

1- Plasma:

Fluid circulating in the blood vessels. 1/4 of <u>ECF</u>

2- Interstitial fluid:

Fluid bathing the cell. Ultra filtration of plasma. 3/4 of <u>ECF</u> Plasma and interstitial fluid are almost having the same composition except for high protein concentration in plasma. Calculate the total body water content of a 40-year-old 70kg man?

• TBW = 42 litres

INC. ATOM

- How many litres lie intracellularly?
 - > 42 X ⅔ = 28L OR 70 X 40/100 = 28L.
- How many litres lie extracellularly?
 - > 42 X ⅓ = 14L OR 70 X 20/100 = 14L.
- How many litres constitute the interstitial fluid?
- How many litres are plasma?

Composition of Body Fluids

• Water is the universal solvent.

- Solutes are broadly classified into:
 - *Electrolytes* inorganic salts, all acids and bases, and some proteins
 - Nonelectrolytes examples include glucose, lipids, creatinine, and urea
 - Amount = in moles, osmoles.

concentration

1- Molarity = moles/liter

(M/L)

2- Osmolarity = osmoles/liter

(osm/L)

3- Osmolality = osmoles/kg

(osm/kg)

In biological solutions:

- Millimoles per liter (mM/L)
- Milliosmoles per (mOsm/L)
- 1mM=1/1000 M
- 1mOsm=1/1000 Osm

TABLE 20-2 OSMOLAR SUBSTANCES IN EXTRACELLULAR AND INTRACELLULAR FLUIDS

	Plasma (m0sm/liter of H ₂ D)	Interstitial	Introcellular
Na*	142	139	14
K*	4.2	4.0	140
Ca ⁺⁺	1.3	1.2	0
Mg*	0.8	0.7	20
CI-	108	108	4
HCO,	24	28.3	10
HPO,, H,PO,-	2	2	11
SO,	0.5	0.5	1
Phosphocreatine			45
Carnosine			14
Amino acids	2	2	8
Creatine	0.2	0.2	9
Lactate	1.2	1.2	15
Adenosine triphosphate			5
Hexose monophosphate			37
Glucose	5.6	5.6	Gur
Protein	1.2	0.2	4
Urea	4	4	4
Others	4.8	3.9	10
Total mOsm/liter	301.8	300.8	301.2
Corrected osmolar activity (mOsm/liter)	282.0	281.0	281.0
Total osmotic pressure at 37° C (mm Hg)	5443	5423	5423

Constituents of ECF and ICF

© Elsevier. Guyton & Hall: Textbook of Medical Physiology 11e - www.studentconsult.com

Extracellular and Intracellular Fluids

- Each fluid compartment of the body has a distinctive pattern of electrolytes.
- Extracellular fluids are similar (except for the high protein content of plasma)
 - Sodium is the chief cation
 - Chloride is the major anion

Intracellular fluid has low sodium and chloride

- Potassium is the chief cation
- Phosphate is the chief anion

 Each compartment must have almost the same concentration of positive charge (cations) as of negative charge (anion).

(Electroneutrality)

- Hypokalemia: decrease in K concentration in the ECF.
- 1-2 mEq/L

• Hyperkalemia: increase in K 60-100% above normal.

Hypernatremia:

increase in Na concentration in ECF.

Hyponatremia:

decrease in Na concentration in the ECF.

osmosis

 Net diffusion of water from a region of high water concentration to region of low water concentration.

Osmotic equilibrium is maintained between intracellular and extracellular fluids:

- Small changes in concentration of solutes in the extracellular fluid can cause tremendous change in cell volume.
- Intracellular osmolarity = extracellular osmolarity.
- ≈ 300 mosm/L

What is Tonicity?

- **Osmolarity** describes the concentration of <u>one</u> solution.
- Tonicity is used to compare between the osmolarities of two or more solutions separated by a semi-permeable membrane.

Which solution is hypertonic to B?

Osmosis

Osmosis

Osmosis

- If <u>environment</u> is:
 - -<u>Hypertonic</u>:
 - MORE SOLUTES outside cell
 - MORE WATER IN CELL
 - over time, cell loses water

- <u>Isotonic</u>:

- same
- No change in cell volume

-<u>Hypotonic</u>:

- LESS SOLUTES outside cell
- LESS WATER IN CELL, more solutes in cell.
- over time, cell gains water

Isotonic solution :

- (not swell or shrink)
- 0.9% solution of sodium chloride or 5% glucose
- same in and out .

Hypotonic solution :

- (swelling) 0.9%
- in is higher than out .

***** Hypertonic solution :

- (shrink) **1**0.9%
- out is higher than in

Glucose and other solutions administered for nutritive purposes

- People who can not take adequate amount of food.
- Slowly.
- Prepared in isotonic solution.

<u>Changes in The Body Fluid</u> <u>Compartments (ECF & ICF) and</u> <u>Edema</u>

Osmosis

Volumes And Osmolarities of ECF and ICF In Abnormal States.

- Some factors can cause the change:
 - dehydration

- intravenous infusion (IV)

- abnormal sweating.
- etc..

• Changes in volume :

1. Volume contraction.

2. Volume expansion.

Changes in volume

Volume contraction

removing

1- *isotonic* solution.

2- hypertonic solution.

3- *hypotonic* solution.

Volume expansion

Adding

1- *isotonic* solution.

2- hypertonic solution.

3- *hypotonic* solution.

What is Tonicity?

- **Osmolarity** describes the concentration of <u>one</u> solution.
- Tonicity is used to compare between the osmolarities of two or more solutions separated by a semi-permeable membrane.

Which solution is hypertonic to B?

1- Loss of iso-osmotic fluid e.g. Diarrhea

Volume contraction:

- 1. Diarrhea.
 - osmolarity of fluid lost ≈ osmolarity of ECF

(loss of isosmotic fluid).

- volume in ECF.
- larterial pressure.

2. Loss of hypotonic solution e.g. Water deprivation

NORMAL STATE

2. Water deprivation :

- Osmolarity and volume will change .

- Osmolarity in both ECF and ICF.

- Volume in both ECF and ICF.

3- Loss of hypertonic sol. e.g. Adrenal insufficiency

NORMAL STATE

3. Loss of hypertonic solution e.g. Adrenal insufficiency:

i.e. Aldosterone deficiency.

- Na⁺ in the ECF.
- osmolarity in both .
- in ECF volume.
- in ICF volume.

NORMAL STATE

VOLUME CONTRACTION

Adrenal insufficiency

Diarrhea

Liters

Volume Expansion

1. Adding of isotonic NaCl.

Volume Expansion

- 1. Infusion of isotonic NaCl.
- in ECF volume.

- No change in osmolarity.

- Isomotic expansion .

© Elsevier. Guyton & Hall: Textbook of Medical Physiology 11e - www.studentconsult.com

2. High NaCl intake.

- teating salt.
- tosmolarity in both.
- volume of ICF .
- volume of ECF .
- hyperosmotic volume expansion.

3- Adding hypotonic solution e.g. Syndrome of inappropriate antidiurtic hormone (SIADH)

© Elsevier. Guyton & Hall: Textbook of Medical Physiology 11e - www.studentconsult.com

• Edema occurs mainly in the ECF compartment

Objectives

- Define edema and describe its different types.
- Discuss and describe the Starling forces governing fluid exchange across capillary walls.
- Link changes in hydrostatic and osmotic pressures to the pathogenesis of edema.

Study source for this lecture:

(Guyton & Hall Textbook of Medical Physiology, 13th ed, pages: 316-320 & 191-201)

Edema

- What is "edema"?
 - Edema = swelling
 - The presence of abnormally large amounts of fluid in the intercellular tissue spaces of the body.

Types of Edema

Edema occurs mainly in the ECF compartment, but it can involve the ICF compartment as well.

Intracellular Edema:

Extracellular Edema

- Extracellular edema = the abnormal accumulation of fluid in intercellular tissue space (i.e. interstitial space).
- Normally, fluid is constantly moving in & out of the interstitial space to allow ECF to distribute between plasma and IF.
- This process happens without fluid accumulating between the cells.
- What happens to cause fluid to accumulate between the cells leading to edema?
- To understand EC edema one must first understand how fluid exchange occurs between capillaries and tissue cells.

Extracellular Edema

common clinical cause is excessive capillary fluid filtration.

Fluid Exchange Between Blood & Interstitial Fluid

- Fluid exchange between blood and tissue cells occurs at the level of the capillaries.
- Capillaries are the smallest blood vessels in our vascular tree.
- They are very small and have a very thin wall allowing easy exchange of fluid across the walls.

Fluid Filtration Across Capillaries

As blood passes through capillaries

Factors Controlling Fluid Filtration Across Capillary Walls

Movement of fluids across capillary walls depends on the balance of *starling forces* acting across the capillary wall.

Starling Forces

Starling Forces Acting Across Capillary Membrane

- <u>4 primary forces determine whether fluid moves in or out</u> of blood "Starling forces":
 - Capillary "*hydrostatic*" pressure \rightarrow out of blood.
 - IF "*hydrostatic*" pressure \rightarrow into blood if +ve and out of blood if -ve.
 - − Plasma *colloid osmotic* pressure \rightarrow into blood.
 - − IF *colloid osmotic* pressure \rightarrow out of blood.

Starling Forces Acting Across Capillary Membrane

- Capillary *hydrostatic pressure (Pc)*:
 - Arterial end = 30 mmHg
 - Venous end = 10 mmHg (usually 15-25 mmHg less than arterial end).
- IF hydrostatic pressure (Pif) is usually subatmospheric in loose connective tissue (≈ -3 mmHg). Because Pif is negative it will actually favour filtration rather than oppose it.
- Plasma *colloid osmotic pressure* (π_p) = 28 mmHg.
- IF *colloid osmotic pressure* (π *if*) = 8 mmHg.

Forces that Determine Fluid Movement through Capillary Membrane

The Lymphatic System

The reabsorption pressure causes 9/10 of the filtered fluid to be reabsorbed while 1/10th remains in the IF.. What happens to this 1/10th?

The total quantity of lymph ≈ 2-3L/day.

Edema

• Two main reasons:

- 1. Abnormal leakage of fluid from plasma to interstitial space.
- 2. Failure of lymphatic uptake.

Edema

Increase capillary filtration

- 1. Increased capillary pressure
 - Kidney failure
 - Heart failure.
 - Venous obstruction

2. Decreased plasma oncotic pressure

- Loss of proteins (nephrotic syndrome, burns).
- Inability to synthesize proteins (liver failure, malnutrition).

3. Increased capillary permeability

- Inflammation
- Infection.
- Immune reactions.

Decrease lymph uptake

Lymphatic obstruction

- Infection (filaria).
- Surgery.
- Congenital absence.
- Cancer.

Edema

Cell membrane structure & transport across cell membrane

objectives

- Describe the fluid mosaic model of membrane structure and function.
- Define permeability and list factors influencing permeability.
- Identify and describe carried-mediated transport processes: Primary active transport, secondary active transport, facilitates diffusion.
- Differentiate between passive and active transport mechanisms and give examples on each.

#Study source for this lecture: (Guyton & Hall Textbook of Medical Physiology, 13th edition) **#**

Cell Membran

- Envelops the cell.
- Thin, pliable and elastic.
- 7 10 nanometer thick.
- Also, referred to as the plasma membrane .

Composition

Lipoprotein

protein 55%

phospholipids 25% cholesterol 13% glycolipid 4%

carbohydrates 3%

The Cell Membrane Phospholipids Consist Of :

- Glycerol head (hydrophilic).
- Two fatty acid "tails" (hydrophobic).

ICF

ECF

The Cell Membrane Proteins

© Elsevier. Guyton & Hall: Textbook of Medical Physiology 11e - www.studentconsult.com

The Cell Membrane Proteins.

- 1. Integral proteins span the membrane .
- Proteins provide structural <u>channels</u> or <u>pores</u>.
- <u>Carrier</u> proteins.

2. Peripheral proteins

- -Present in one side.
- Hormone receptors .
- Cell surface antigens .

The Cell Membrane Carbohydrates:

- **Glycoproteins** (most of it).
- **Glycolipids** (1/10)
- Proteoglycans (mainly carbohydrate substance bound together by protein)
- "glyco" part is in the surface forming.
- Glycocalyx (Carbohydrate molecules protrude to the outside of the cell forming a loose carbohydrate coat "glycocalyx"

Function Of Carbohydrates:

- Attaches cell to each others.
- Act as receptors substances (help ligend to recognize its receptor).
- Some enter in to **immune reactions**.
- Give most of cells overall -ve surface.

Transport Through The Cell Membrane

• Cell membrane is *selectively permeable*.

- Through the **proteins**.
 - Water-soluble substances e.g. ions, glucose ..
- Directly through the **bilayer**.
 - Fat-soluble substance (O2, CO2, N2, alcohol..

Types Of Membrane Transport

1- Diffusion

a) simple diffusion.b) facilitated diffusion.

2- Active transport.

- a) primary active transport.
- b) secondary active transport.

3- Osmosis.

© Elsevier. Guyton & Hall: Textbook of Medical Physiology 11e - www.studentconsult.com

Diffusion

Random movement of substance either through the membrane directly or in combination with carrier protein <u>down</u> an electrochemical gradient.

- 1- Simple diffusion.
- 2- facilitated diffusion.

- Simple and facilitated diffusion Do NOT require input of energy = powered by concentration gradient or electrical gradient.

- Active transport = uses ATP.

Diffusion Through the Plasma

(a) Simple diffusion directly through the phospholipid bilayer

in transport protein

(c) Channel-mediated facilitated diffusion through a channel protein: mostly ions selected on basis of size and charge

Small lipid-

(d) Osmosis, diffusion through a specific channel protein (aquaporin) or through the lipid bilayer

Q¹

Water

molecules

Simple Diffusion

- Non-carrier mediated transport down an electrochemical gradient.
- Diffusion of non-electrolytes (uncharged) from high concentration to low concentration.
- Diffusion of electrolytes (charged) depend on both chemical, as will as, electrical potential difference.

Rate Of Simple Diffusion Depend On:

- **1- Amount of substance available.**
- 2- The number of opening in the cell membrane for the substance (pores).

selective gating system

- **3- Chemical concentration difference.**
- 4- Electrical potential difference.
- 5- Molecular size of the substance.
- 6- Lipid solubility.

Rate of diffusion = P X A (C1-C2)

 P = Permeability coefficient.
a.Temperature. b. Size of molecule. c. Solubility in lipids. d. Thickness of membrane.

2. A = surface area.

- **3. C1-C2 = gradient difference:**
- a. Concentration difference
- b. b. Electrical difference.
- c. Pressure difference.

Facilitated Diffusion

• <u>Carrier mediated</u> transport down an electrochemical gradient.

• E.g. glucose & amino acids.

Facilitated diffusion—the process that allows selective movement in and out of the **cell membrane**.

Cytoplasm

BiologyWise.com

Features Of Carrier Mediated Transport

(Facilitated diffusion)

1- saturation:

f concentration —→f binding of protein If all protein is occupied we achieve full saturation.

i.e. The rate of diffusion reaches a maximum (Vmax) when all the carriers are functioning as rapidly as possible.

2- stereopecificity:

The binding site recognize a specific substance D-glucose but not L-glucose.

What limits maximum rate (Vmax) of facilitated diffusion? Number of carriers

3- Competition:

Chemically similar substance can compete for the same binding site.

D-galactose / D-glucose.

Substance → binding site → substance protein complex → conformational changes → release of substance

Active Transport:

- Transport (<u>uphill</u>) ____ against electrochemical gradient.
 Required energy____ direct. indirect.
- Required carrier protein.

1- Primary Active Transport:

- -Energy is supplied directly from ATP. ATP \longrightarrow ADP +P+ energy.
- A. Sodium-Potassium pump (Na⁺-K⁺ pump).
 - its present in all cell membranes.
 - 3 Na⁺ in \longrightarrow out.
 - 2 K⁺ out \longrightarrow in.

Discovery

Na+/K+-ATPase was discovered by <u>Jens Christian</u>
 <u>Skou</u> in 1957.

 In 1997, he received one-half of the <u>Nobel Prize</u> in <u>Chemistry</u>.

Characteristic Of The Pump:

- 1. Carrier protein is formed from α and β subunits.
- 2. Binding site for Na inside the cell.
- 3. Binding site for K outside the cell.
- 4. It has ATPase activity.
- 5. 3 Na out.
- 6. 2 K in.

Function:

- Maintaining Na⁺ and K⁺ concentration difference .
- 2. It's the basis of nerve signal transmtion .
- 3. Maintaining –ve potential inside the cell.
- 4. Maintains a normal cell volume.

B. primary active transport of calcium (Ca²+ ATPase).

- sarcoplasmic reticulum (SR).
- mitochondria.
- in some cell membranes.

Function:

Maintaining a low Ca²+ concentration inside the cell.

C. primary active transport of hydrogen ions H⁺-K ATPase.

- stomach.
- kidneys.
- pump to the lumen.
- H⁺-K ATPase inhibitors (treat ulcer disease). (omeprazol)

2) Secondary Active Transport:

• Co- transport and countertransport:

is transport of one or more solutes against an electrochemical gradient ,coupled to the transport of another solute down an electrochemical gradient

- "downhill" solute is Na.
- Energy is supplied indirectly form primary transport.

• Co-transport:

- All solutes move in the same direction

" inside cell".

- e.g. Na⁺ glucose Co-transport.
 - Na⁺ amino acid Co-transport.
 - in the intestinal tract kidney.

• Countertransport:

- Na⁺ is moving to the interior causing other substance to move out.
- Ca²+ Na⁺ exchange.
 (present in many cell membranes)
- Na⁺ H⁺ exchange in the kidney.

Electrolyte Concentration

- Expressed in milliequivalents per liter (mEq/L), a measure of the number of electrical charges in one liter of solution.
- mEq/L = (concentration of ion in [mg/L]/the atomic weight of ion) × number of electrical charges on one ion.
- For single charged ions, 1 mEq = 1 mOsm
- For bivalent ions, 1 mEq = 1/2 mOsm