BLOOD PHYSIOLOGY

Lecture 2

Dr Nervana Mostafa

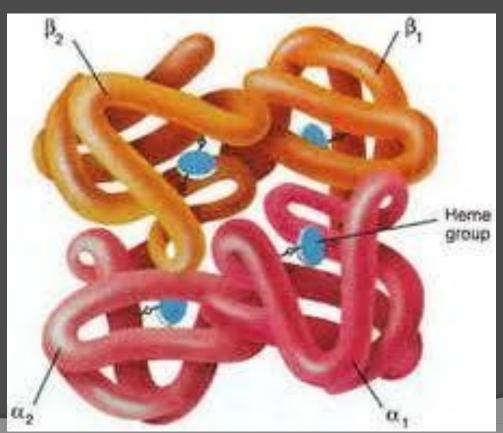
Objectives

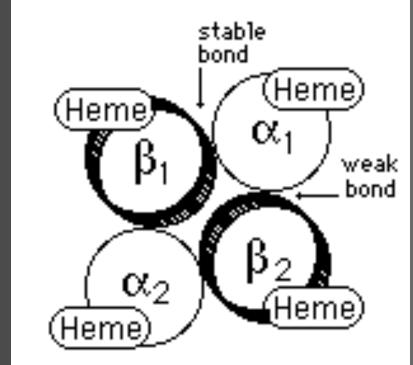
At the end of this lecture you should be able to:

- 1. Describe essential elements needed for RBC formation.
- 2. Describe the process of Vit B12 absorption and its malabsorption.
- 3. Recognize haemaglobin structure and its functions.
- 4. Discuss iron metabolism (absorption, storage and transport)

Objectives - cont.

- 5. Describe the fate of old RBC.
- 6. Describe anemia and its causes.
- 7. Recognize causes of polycythemia.


Topics:


- 1. Essential elements for RBC formation
 - Proteins
 - Vitamins: B12, Folic acid, Vit C ...)
 - · Iron Metabolism.
- 2. Anemia
- 3. Polycythemia
- 4. Structure & functions of Hb

Essential elements for RBCs formation and Maturation

Certain elements are essential for RBC formation and maturation:

- 1. Amino acids: formation of globin in haemoglobin
 - sever protein deficiency → anaemia
- 2. Iron: formation of haemoglobin
 - Deficiency → anaemia

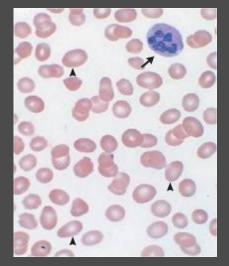
Essential elements for RBCs formation and Maturation cont.

3. Vitamins:

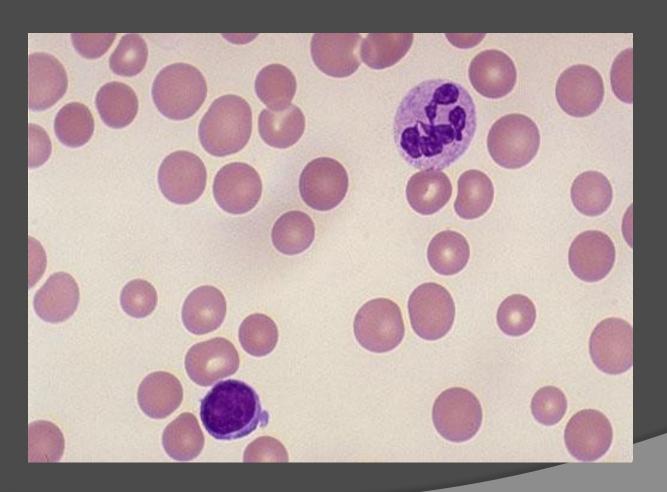
- Vit B12 and Folic acid
 - Synthesis of nucleoprotein
 - Deficiency → anemia
- Other: Vit B6, Riboflavin, nicotinic acid, biotin, Vit C, Vit E

4. Essential elements

& Copper, Cobalt, zinc, manganese

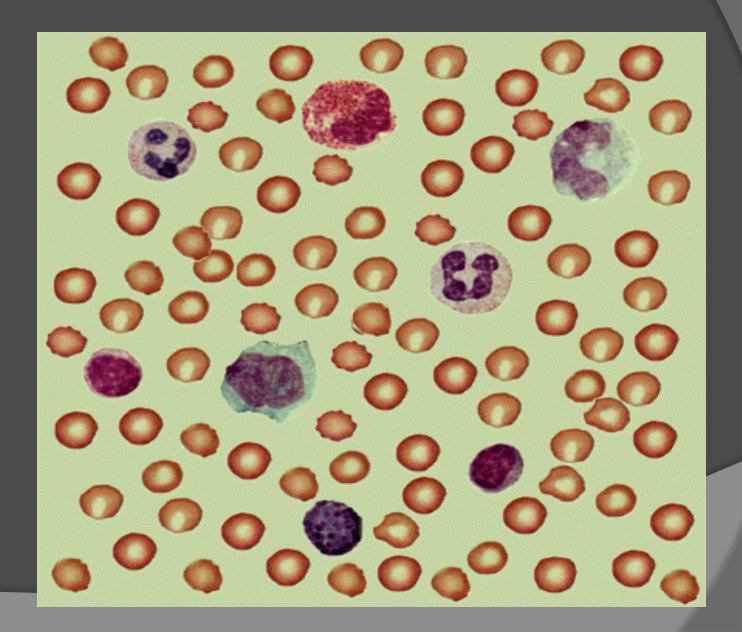

5. Hormones

Androgens, Thyroid, cortisol & growth hormones Deficiencies of any one results in anaemia

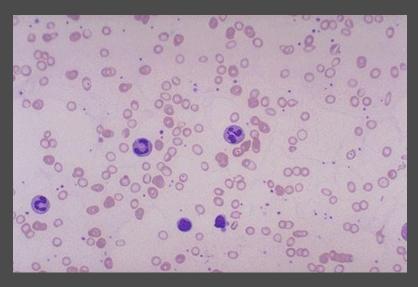

8

Vitamin B12 & Folic acid

- Important for DNA synthesis and final maturation of RBC.
- Dietary source: meat, milk, liver, fat, green vegetables.
- Deficiency leads to:
 - Failure of nuclear maturation & division
 - Abnormally large & oval shape RBC
 - Short life span
 - reduced RBC count & Hb
 - Macrocytic (megaloblastic) anemia



Macrocytic anemia



Note the hypersegmented neurotrophil and also that the RBC are almost as large as the lymphocyte Finally, note that there are fewer RBCs.

Blood Film

Microcytic hypochromic anemia

- The RBC's are smaller than normal and have an increased zone of central pallor.
- This is indicative of a microcytic (smaller size of each RBC) and hypochromic (less hemoglobin in each RBC) anemia.
- There is also increased anisocytosis (variation in size) and poikilocytosis (variation in shape)

ANAEMIAS

- Definiation
 - Decrease number of RBC
 - Decrease Hb

0

 Symptoms: Tired, Fatigue, short of breath, heart failure.

Causes of anaemia

1.Blood Loss

- -acute __ accident (RBC return to normal 3-6w)
- -Chronic microcytic hypochromic anaema (ulcer, worms)

2.Decrease RBC production

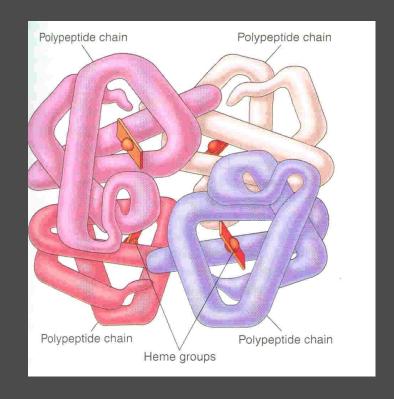
- > Nutritional causes:
- Iron microcytic hypochromic anaemia.
- Vit B12 & Folic acid megaloblastic anaemia .
- ➤Bone marrow failure: destruction by cancer, radiation, drugs Aplastic anaemia.

3. Haemolytic <u>excessive destruction</u>

- > Abnormal cells or Hb
- Spherocytosis
- •sickle cells
- > Incompatible blood transfusion.
- Erythroblastosis fetalis .

Polycythemia

Increased number of RBC


Types:

- 1. Primary (Polycythemia Rubra Vera PRV): uncontrolled RBC production.
- 2. Secondary to hypoxia: high altitude (physiological), chronic respiratory or cardiac disease

HAEMOGLOBIN

Hb molecules consist 4
chains each formed of
heme & polypeptide chain
(globin)

Heme consist of protoporphyrin ring + iron (F²⁺)

Types of normal Hb.:

- -Hb A (2 α & 2 beta chains) (adult Hb) (98%).
- Hb A2 (2 α & 2 delta chains) (2%)
- -Hb F (2 α & 2 γ chains) (Hb of intrauterine life).

-Abnormality in the polypeptide chain - abnormal Hb (hemoglobinopathies) e.g thalassemias, sickle cell (HbS).

Functions of Hemoglobin

- · Carriage of O2
 - Hb <u>reversibly</u> bind O₂ to form oxyhemoglobin, affect by pH, temperatre, H⁺
- Carriage of CO2
 - Hb bind CO_2 = carboxyhemaglobin
- Buffer

Malabsorption of Vit. B12

Pernicious Anemia

- VB12 absorption needs intrinsic factor secreted by parietal cells of stomach.
- VB12 + intrinsic factor is absorbed in the terminal lleum.
- Deficiency arise from (causes of deficiencies):
 - Inadequate intake
 - Poor absorption due to Intestinal disease

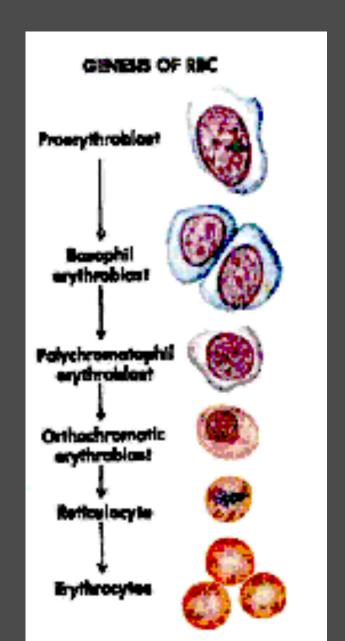
Iron metabolism (Fe)

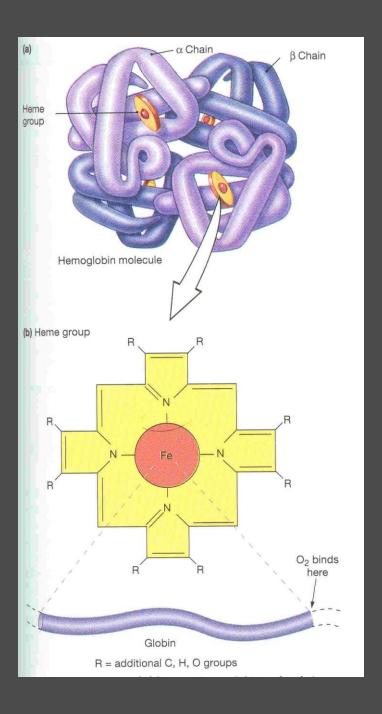
Iron is needed for the synthesis of haemoglobin, myoglobin cytochrome oxsidase, peroxidase & catalase

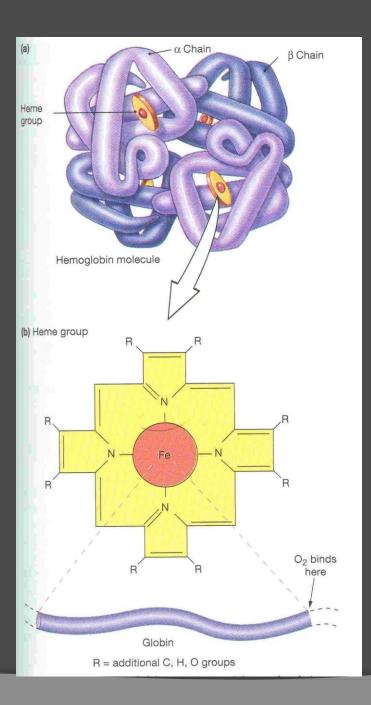
- Total Iron in the body = 4-5g
 - 65% Haemoglobin
 - 5% other hems
 - 1% bound to transferrin (betaglobulin) in blood
 - 15-30% stored iron in the form of ferritin in the liver, spleen and bone marrow.

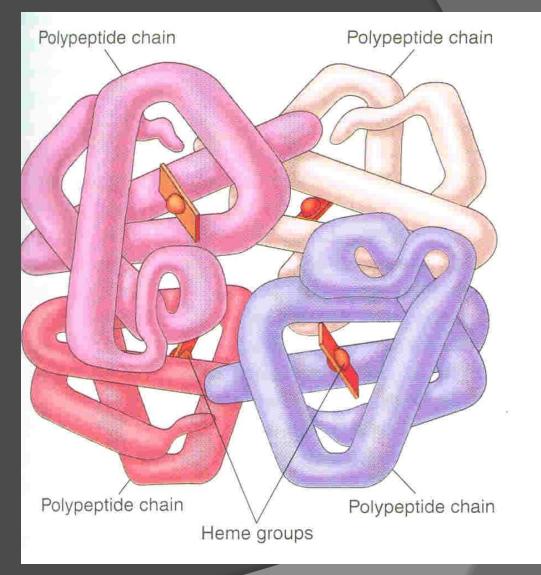
Iron absorption

- Iron in food mostly in oxidized form (Ferric, F⁺³)
- Better absorbed in reduced form (Ferrous, F+2)
- Iron in stomach is reduced by gastric acid, Vitamin C.
- Rate of iron absorption depend on the amount of iron stored


Transport and storage of iron


- Iron is transport in plasma in the form of Transferrin (apotransferrin + iron).
- Iron is stored in two forms:
 - Ferritin (apoferritin + iron)
 - Haemosiderin (insoluble complex molecule, in liver, spleen, bone marrow)
- Daily loss of iron is 0.6 mg in male & 1.3mg/day in females.


Destruction of RBC


- RBC life span in circulation = 120 days.
- Metabolic active cells.
- Old cell has a fragile cell membrane, cell will rupture as it passes in narrow capillaries (and spleen).
- Released Hb is taken up by macrophages in liver, spleen & bone marrow:
 - Hb is broken into its component:
 - Polypeptide—amino acids (protein pool = storage)
 - Iron ---- ferrtin
 - Haem (Porphyrin)>>—bilirubin>>—secreted by the liver into bile. [excess destruction of RBC Jaundice]

Stages of differentiation of RBC

