PHARMACODYNAMICS II QUANTITATIVE ASPECTS OF DRUGS

Sary Alsanea, Ph.D.

Assistant Professor at the Department of Pharmacology and Toxicology, Pharmacy College, KSU

salsanea@ksu.edu.sa

(Slides are adopted and modified from Prof. Hanan Hajar)

Quantitative aspects of drugs

By the end of this lecture, you should:

- Determine quantitative aspects of drug receptor binding.
- Recognize concentration binding curves.
- Identify dose response curves and the therapeutic utility of these curves.
- Classify different types of antagonism.

QUANTIFY ASPECTS OF DRUG ACTION

Concentration binding curves

Is a correlation between drug concentration [C] used (x- axis) and drug binding capacity at receptors [B] (y-axis). i.e. relation between concentration & drug binding

Concentration binding curves

 $(k_D) = [C]$ of D required to occupy 50% of receptors at equilibrium

Concentration binding curves

\square B_{max} (the binding capacity)

is the total density of receptors in the tissues

□ K_{D50}

is the concentration of drug required to occupy 50% of receptors at equilibrium.

□ The affinity of drug for receptor

The higher the affinity of D for receptor the lower is the K_D i.e. inverse relation (Binding Potential = B_{max}/K_D)

Used to study how response varies with the concentration or dose.

Is a correlation between <u>drug concentration</u> [D] used
(x- axis) and <u>drug response</u> [R] (y-axis).

□ i.e. relation between concentration & Response

□ Type of Dose-response curves

Graded dose-response curve

Quantal dose-response curve (all or none).

Type of Dose-response curves

Graded dose-response curve

- Response is gradual
- Gradual increase in response by increasing the dose (continuous response).
- e.g. ↓blood pressure, heart rate, blood glucose level, cholesterol,...

□ Type of Dose-response curves

Graded dose-response curve

Curve is usually sigmoid in shape

- Used to calculate
 - Emax
 - EC₅₀
 - Potency
 - Efficacy

Dose -response curves- Graded

 $EC_{50} = C$ that gives the half-maximal effect

% of Maximal Effect

Dose -response curves- Graded

Used to determine

- Maximum Efficacy (Emax): is the maximal biological response produced by a drug.
- Median Effective concentration (EC50): is the concentration of the drug that gives 50% of the maximal response (Emax).
- Potency: the concentration of drug required to produce a specified response (50% of the maximal response = EC50).
- Potency: is inversely proportional to EC 50.

Dose -response curves- Graded

- Type of Dose-response curves
 - Quantal dose-response curve
 - Relate drug concentration to % percentage of patients responding (all or none response).
 - The response may be therapeutic response, adverse effect or lethal effect.
 - e.g. prevention of convulsion, arrhythmias or death.
 - Used to determine
 - ED50
 - TD50 & LD50
 - Therapeutic index.

Dose -response curves-Quantal

A. 50% of individuals exhibit the specified therapeutic response

- B. " " toxic effects
- C. " " death

Predict the safety profile

Therapeutic Index (T.I.)

A measure of drug safety

- "The ratio of the dose that produces toxicity to the dose that produces a clinically desired or effective response in a population of individuals"
- □ Therapeutic Index = TD_{50}/ED_{50} or LD_{50}/ED_{50}
 - \square TD₅₀ is the dose that produces a toxic effect in 50% of the population.
 - $\hfill\square$ LD $_{50}$ is the dose that is lethal in 50% of the population
 - $\hfill\square$ ED_{50} is the dose that produces the rapeutic response in 50% of the population
- Large value = drug has wide margin of safety e.g. diazepam
- Small value = a narrow margin of safety e.g. digoxin

Dose -response curves-Quantal

Therapeutic Index (T.I.)

Therapeutic Index (T.I.)

It is the decrease or the complete abolishment of the effect of one drug in the presence of another.

- Physiological antagonism
- Chemical antagonism
- Pharmacokinetic
- Pharmacodynamic antagonism (Receptor-blockade antagonism).
 - Competitive
 - Reversible
 - Irreversible
 - Non-competitive

 Physiological antagonism
Two drugs act on different receptors to produce different physiological effects. e.g. Histamine & Adrenaline

□ Adrenaline → Vasoconstriction (↑ BP) & bronchodilation.
□ Histamine → vasodilatation (↓BP) & bronchoconstriction

- Chemical antagonism
 - Simple chemical reaction & loss of activity
 - No receptor.
 - e.g. Dimercaprol reduces heavy metal toxicity (as in lead toxicity).

Pharmacokinetic

The antagonist effectively reduces the concentration of the active drug at the site of action.

e.g. Phenobarbitone accelerates hepatic metabolism of warfarin

Pharmacodynamic antagonism (Receptor-blockade antagonism).

- Competitive
 - Reversible
 - Irreversible
- Non-Competitive

- Pharmacodynamic antagonism (Receptor-blockade antagonism).
 - Competitive
 - Reversible
- Two drugs compete for the same receptor.
- The antagonist partially or completely prevents the pharmacological effect of agonist.
- □ Antagonist dissociate rapidly from receptor.
- Antagonism can be overcome by increasing the concentration of the agonist.
- Parallel shift of the curve to the right, without any change in slope or maximum
- □ e.g. acetylcholine and atropine

Pharmacodynamic antagonism (Receptor-blockade antagonism).

- Competitive
 - Reversible

Pharmacodynamic antagonism (Receptor-blockade antagonism).

- Competitive
 - Irreversible
- Two drugs compete for the same receptor.
- Antagonist forms stable, permanent chemical bond with receptor.
- The original response <u>can not be overcome</u> even by increasing the dose of the agonist.
- No parallel shift
- □ A decrease in slope and a reduced maximum are obtained.
- □ e.g. phenoxybenzamine and noradrenaline.

Competitive reversible antagonist vs Competitive irreversible antagonist

Pharmacodynamic antagonism (Receptor-blockade antagonism).

Non-Competitive

- Antagonist block at some point the chain of events that stimulate the response of agonist.
- Agonist and Antagonist can be bound simultaneously.
- Antagonism cannot be overcome by increasing concentration of agonist e.g. verapamil and noradrenaline.

What about EC100?

As the concentration (X) goes up, the dose-response equation computes the response (Y) as getting closer and closer to the Top plateau. But it never reaches it. When a drug binds to a receptor with mass action rules, the fraction occupancy equals D/(D+K), where D is the concentration of drug (that you vary) and K is the equilibrium binding dissiociation constant, which is a fixed property of the drug and receptor. As D gets higher and higher, the fractional occupancy gets closer and closer to 1.0, but never reaches it. Therefore, there can be no EC100. And no EC0.