
Gloconeogeniesis

Color Index:

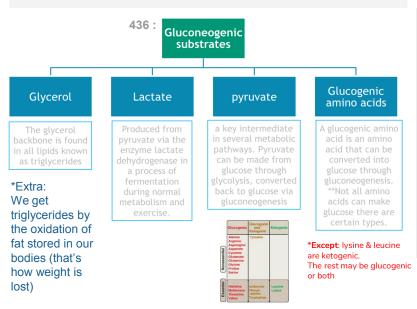
- ➤ Original slides.
- Important.
- ≻ 436 Notes
- > 438 notes (in Boxes)
- Extra information

Biochemistry team 438

Objectives:

- The importance of gluconeogenesis as an important pathway for glucose production
- The main reactions of gluconeogenesis
- The rate-limiting enzymes of gluconeogenesis
- Gluconeogensis is an energy-consuming, anabolic pathway

*Note: Enzymes are so important in this lecture don't forget to memorize them!

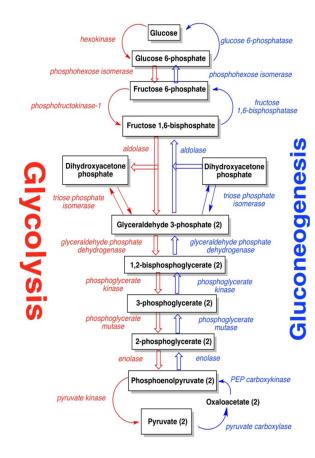

Gluconeogenesis

• Gluconeogenesis is an energy consuming, anabolic pathway.

It is a metabolic pathway that results in: the generation of glucose from certain **non**carbohydrate carbon substrates . (it's one of the essential pathways of energy metabolism)

- Occurs in Liver mainly, and in Kidney
- During Overnight fast: 90% of gluconeogenesis occurs in liver.
 10% of gluconeogenesis occurs in Kidneys.
- occurs in both mitochondria and cytosol.
 EXCEPTION! if gluconeogenesis starts by Glycerol, it will need only the cytosol. * so the RBC
 will be involved.

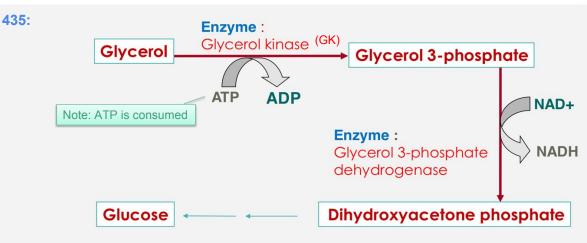
• **Gluconeogenesis** is important to provide the body with glucose when there is <u>no external</u> source of glucose (during prolonged fasting or starvation).



Gluconeogenic pathway

Seven glycolytic reactions are reversible & are used in gluconeogenesis from lactate or pyruvate.

Three glycolytic reactions are **irreversible** & must be reversed (by **4** alternate reactions) in gluconeogenesis.


Reversible

Gluconeogene	uconeogenesis pathway						
The 4 alternate reactions in glue irreversible glycolytic steps:	coneogenesis to the <mark>3</mark>	4- Dephosphorylation of G-6-P Glucose 6-P Glucose Fructose 6-P B- Dephosphorylation of F 1,6-P					
Glycolysis enzymes	Gluconeogenesis enzymes	Fructose 1,6-bisphosphate Glyceraldehyde 3-P 5 Dihydroxy-					
Pyruvate kinase	1) Pyruvate carboxylase 2) PEP-CK	1,3-Bisphosphoglycerate 3-Phosphoglycerate					
PFK-1	3) Fructose 1,6 bisphosphatase	2-Phosphoglycerate 2-Formation of PEP Phosphoenolpyruvate					
Glucokinase	4) Glucose 6-phosphatase	Lactate Service CO2 Oxaloacetate					

1. Gluconeogenic Substrates: Glycerol

- Glycerol is released during the hydrolysis of Triacylglycerol (TAG) in adipose tissue.
- Glycerol kinase only in liver & kidneys
- Gluconeogenesis of glycerol occurs in only the cytosol

2. Gluconeogenic Substrates: Glucogenic Amino Acids (AAs)

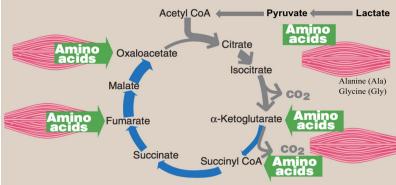
435:

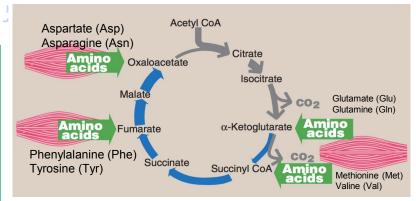
- AAs can be derived from hydrolysis of tissue proteins.
- The anabolic feature of gluconeogenesis.

436: مجموعة من الامينو اسد بتدخل كربس سايكل عن طريق

- The catabolism of glucogenic amino acids produces either:
 pyruvate
 - Or one of the intermediates in the Krebs Cycle.

For example: catabolizing asparagine produces oxaloacetate (an intermediate) which can be converted later to glucose.


Notes:

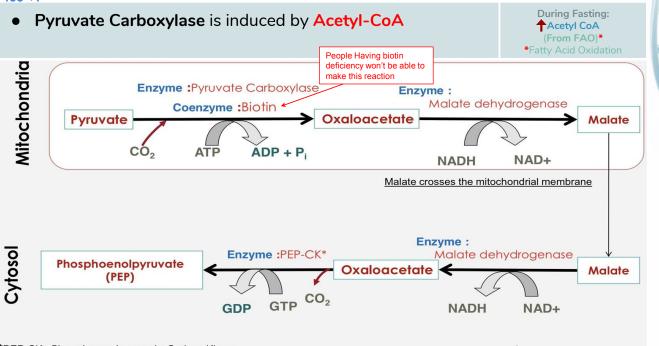

Alanine (Ala) Glycine (Gly)

They are converted to pyruvate then to oxaloacetate then to malate

Acetyl CoA can't be converted directly to pyruvate and therefore can't be converted to glucose

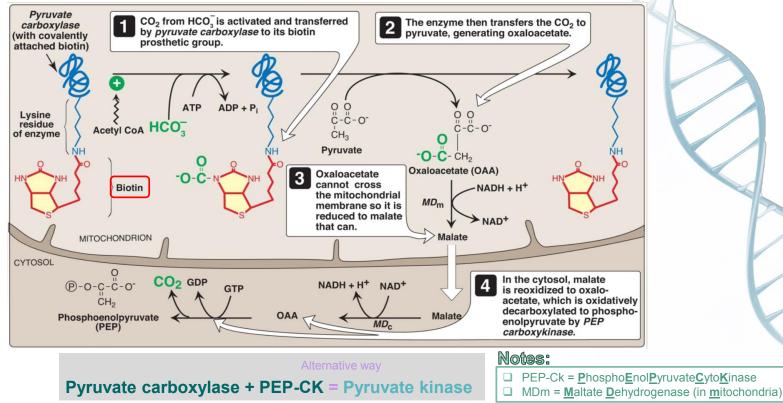
- Acetyl coA is converted to Oxaloacetate
- Oxaloacetate can be oxidized to form phosphoenolpyruvate
- After getting phosphoenolpyruvate the steps are the same in glycolysis which are reversible so we're getting close to getting glucose

3. Gluconeogenic Substrates: Lactate (Cori Cycle)


436: Lactate is released into the blood by exercising skeletal muscle and by cells that lack mitochondria such as RBCs.

In the Cori cycle, bloodborne glucose is converted by exercising muscle to lactate, which diffuses into the blood. The lactate is taken up by **the liver** and **reconverted to glucose**, which is released back into circulation.

4. Gluconeogenic Substrates: Pyruvate Carboxylation



*PEP-CK= Phosphoenolpyruvate CarboxyKinase

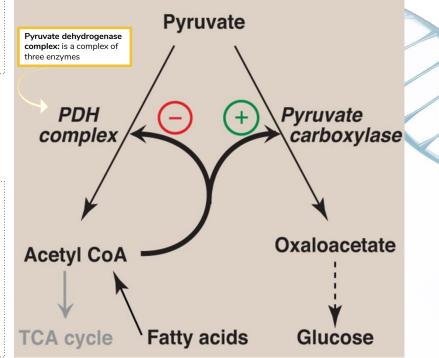
Pyruvate carboxylase + PEP-CK ≠ Pyruvate kinase

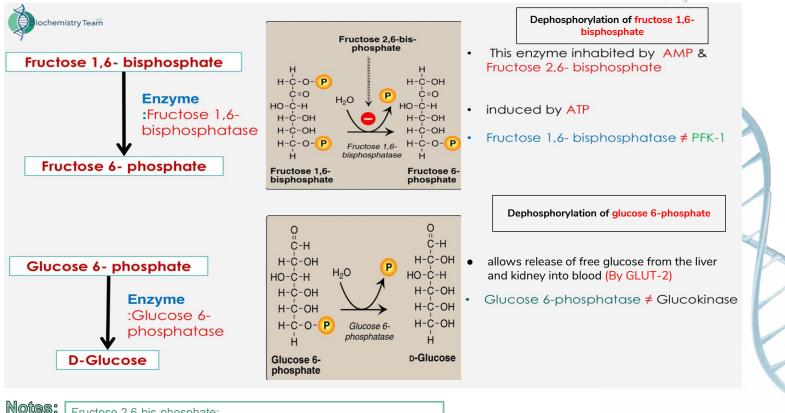
Pyruvate Carboxylation & PEP-CK

Regulation of Pyruvate Carboxylase reaction

Acetyl CoA diverts pyruvate away from oxidation (by PDH complex to produce acetyl coA) and toward gluconeogenesis

How? High level of Acetyl-CoA will <u>inhibit</u> PDH complex and stop or reduce the Glycolysis. And <u>stimulate</u> Pyruvate Carboxylase to start

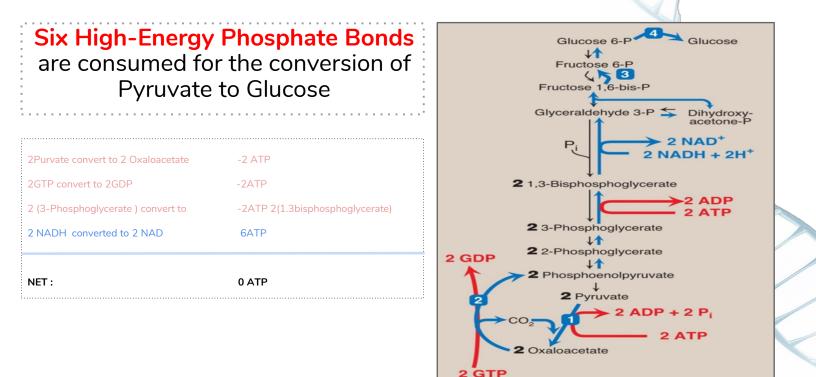

Gluconeogenesis.


+ positive regulation

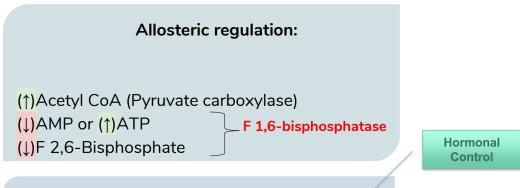
High Acetyl coA will stimulate the enzyme pyruvate carboxylase to make more <u>oxaloacetate</u> Then, the oxaloacetate will produce more glucose

-negative regulation

High level of Acetyl-coA inhibit PDH complex. PDH function: converts pyruvate carboxylase to Acetyl coA



Fructose 2,6-bis-phosphate:


- **INHIBITS** fructose 1,6-bisphosphotase (Gluconeogenesis)
- ACTIVATES PFK-1 (Glycolysis)

Gluconeogenesis: Energy-Consumed

Gluconeogenesis: Regulation

Reciprocal control of : Gluconeogenesis (محفز) & glycolysis (مثبط)

Glucagon (↓ I/G* ratio) Allosteric (F 2,6-Bisphosphate) Induction (PEP-CK)

436 ♡:

Important!!!

- Pyruvate carboxylase is only found in matrix of mitochondria
- Gluconeogenesis rate-limiting enzymes:
- Pyruvate carboxylase
- PEP-CK

If the insulin increase this deriving to glycolysis

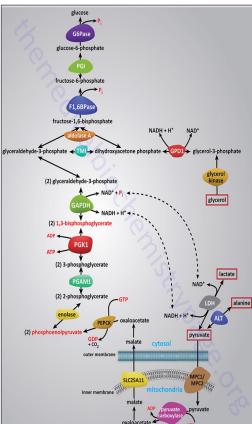
If the insulin decrease (glucagon increase) this deriving to gluconeogenesis

Review 435:

	Glycolysis								
	Reactions	From	Into	E	Inzyme used (by)	Type	Type of Step		
1	Phosphorylation	Glucose	Glucose 6-p		cokinase (in most tissues Glucokinase (in liver)	Irreversible	Regulatory		
2	Isomerization	Glucose 6-P	Fructose 6-P	Phos	phoglucose isomerase	Reversible	Not regulated		
3	Phosphorylation	Fructose 6-P	Fructose 1,6 bisphosphate	Phosph	ofructokinase1 (PFK-1)	Irreversible	Most important		
4	Cleavage	Fructose 1,6 bisphosphate	Dihydroxyacetone phosphate (DHAP)		Aldolase	Reversible	Not regulated		
5	Isomerization	Dihydroxyacetone phosphate (DHAP)	2 molecules of glyceraldehyde 3-P.	Т	riose-P isomerase	Reversible	Not regulated		
6	Oxidation	Glyceraldehyde 3-P	1,3-bisphosphoglycerate (1,3-BPG)	G	lyceraldehyde 3-P dehydrogenase	-	-		
7	Synthesis	1,3-BPG	3-phosphoglycerate		sphoglycerate kinase	Reversible	Not regulated		
8	Shift P group	Carbon 3		Phos			Not regulated		
9	Dehydration	2-P glycerate	Phosphoenolpyruvate (PEP)		Enolase		Not regulated		
10	Formation	PEP	Pyruvate		ruvate kinase (PK)	Irreversible	Regulatory		
		Reactions of Krebs Cycle							
	Reactions	From	Into	E	nzyme used (by)	Type of Step			
1	Synthesis	acetyl CoA + OAA	Citrate		citrate synthase	inhibits PFK-1			
2	Isomerization	Citrate	isocitrate		aconitase	-			
3	Oxidation & decarboxylation	Isocitrate	αKG	isocitrate dehydrogenase		oxidative phosphorylation			
4	Oxidation & decarboxylation	αKG	succinyl CoA	αKG d	lehydrogenase complex	oxidative phosphorylation			
5	Cleavage	succinyl CoA	succinate	st	accinate thiokinase	substrate-level phosphorylation			
6	Oxidation	succinate	fumarate	succinate dehydrogenase		oxidative phosphorylation			
7	Hydration	fumarate	L-malate		fumarase				
8	Oxidation	L-malate	alate OAA 1		late dehydrogenase	oxidative phosphorylation			
			2-P glycerate Phosphoenolpyrivate (PEP) Enolase Reversible Not regulated PEP Pyrivate Pyrivate kinase (PK) Irreversible Regulatory Reactions of Krebs Cycle From Into Enzyme used (by) Type of Step yl CoA + OAA Citrate citrate synthase inhibits PFK-1 Citrate isocitrate aconitase - Isocitrate αKG isocitrate dehydrogenase oxidative phosphorylation αKG succinyl CoA αKG dehydrogenase oxidative phosphorylation succinyl CoA succinate succinate thiokinase substrate-level phosphorylation succinate fumarate succinate dehydrogenase oxidative phosphorylation fumarate L-malate fumarase - L-malate fumarase - - oxidative phosphorylation fumarase - - furgenesis Gluconeogenesis oxidative phosphorylation						
	Glyco	olysis step (Enzyme)	From→ Into		Gluconeogenesis	Inform	nation		
1	PEP → Pyruvate (1 1-(Carboxylation r		1-Pyruvate→Oxaloaceta	te	Pyruvate Caroxylase		ATP,Biotin Mitochondria		
2	2-(Decarboxylation	& phosphorylation reaction)	2-Oxaloacetate → PEP		PEPCK	Requires GTP, h	appens in Cytosol		
3	Fructose 6-P → Fructose 1,6 Bisphosphate (PFK-1) (Dephosphorylation reaction)		K-1) Fructose 1,6 Bisphosphate→Fru	Fructose 1,6 Bisphosphate→Fructose 6-P		Inhibited by high levels of AMP Activated by high levels of ATP			
4	Glucose → Glucose 6-P (Hexokinase) (Dephosphorylation reaction)		Glucose 6-P → Glucos	Glucose 6-P \rightarrow Glucose		Enzyme is found only in liver and kidney			

Take Home Message

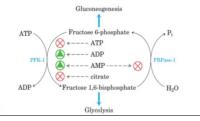
 Gluconeogenesis is an important pathway for glucose production from noncarbohydrate sources during prolonged fasting.


•Lactate, glycerol and glucogenic amino acids are the major gluconeogenic substrates.

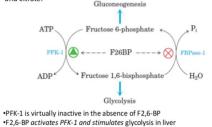
•Gluconeogenesis is not a simple reversal of glycolysis. In fact, gluconeogenesis requires <u>4 unique</u> reactions to circumvent the <u>3 irreversible</u> reactions of glycolysis.

•Gluconeogenesis and glycolysis are <u>reciprocally controlled</u>, allowing efficient glucose metabolism.

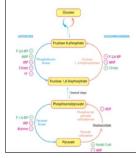
•It is mainly anabolic pathway that consumes ATP for the synthesis of glucose.


This slide is EXTRA

Allosteric regulation


• Fructose 1,6- bisphosphatase-1 (FBPase1)

- Inhibited by AMP, when energy currency ATP is less
- Thus there gluconeogenesis is down regulated because it is a energy consuming process.
- The opposing effect of PFK-1 and FBPase-1 helps to regulate glycolysis and gluconeogenesis according to current need of cell


Hormonal Regulation

- hormonal regulation of glycolysis and gluconeogenesis is mediated by fructose 2,6-bisphosphate.
- F2,6-BP binds to allosteric site on PFK-1 increases that its affinity for substrate F 6-P, & reduces its affinity for the allosteric inhibitors ATP and citrate.

•F2,6-BP inhibits FBPase-1 slowing gluconeogenesis.

Reciprocal Regulation of Gluconeogenesis and Glycolysis in the Liver

Glycolysis and Gluconeogenesis are reciprocally regulated . When glycolysis is on Gluconeogenesis is turned off especially in the fed state, whereas under conditions of starvation, gluconeogenesis is fully on and glycolysis is turned off. • Both the cycles are never

 Both the cycles are never active at the same pace at the same time.

Summary Chart- Regulation of Gluconeogenesis

Enzyme	Effect of substrate concentration	Allosteric modification/ Feed back Inhibition	Induction/ Repression	Clinical Significance
Pyruvate carboxylase	Inhibited by high carbohydrate diet Stimulated during fasting	Activator-Acetyl CoA Inhibitor ADP	Induced by Glucocorticoids, glucagon, epinephrine Repressed by Insulin	Activity increases in Diabetes Mellitus
Fructose 1,6 bisphosphata se	Inhibited by high carbohydrate diet Stimulated during fasting	Activator-Citrate Inhibitor AMP, Fr 2,6 bisphosphate	Induced by Glucocorticoids, glucagon, epinephrine Repressed by Insulin	Activity increases in Diabetes Mellitus

Q1; all amino acid can converted into glucose except

A-Alginine & theronine B-lysine & leucine **C-glycine**

Q3; gluconeogenesis always occurs in both mitochondria and cytosol

A-true

B- false

Q2; the main site of glucogoneogenesis is:

A-liver **B-kidney** C-spleen

Q4; oxaloacetate can't cross the cell membrane so it is converted to....., then back to oxaloacetate

A-malate

B-fumarate

C-phosphoenolpyruvate

Answer key:

• One of the unique enzyme of gluconeogenesis is......

glucose-6-phosphatase

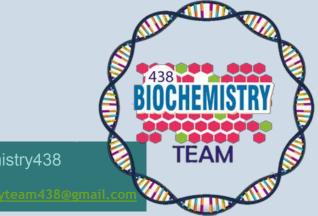
And we're done with FOUNDATION block !!!

See you next block

A very very special thanks to the best team in the world!!

"Finish last in your league and they call you idiot. Finish last in medical school and they call you doctor." —Abe Lemons

Keep Working until you can say "scalpel please".



- أجيد آل رشود <
- الوتين البلوي 🛛
- إيلاف المسيحل ح
- جود الخليفة <
- جود العنيبي 🖌
- ريم القرني
- سارة الهلال ح
- شهد السلامه م
- طيف العتيبي <
- عبير الخضير 🖌
- غيداء البريثن <
- لينا العصيمي <
- نيب العصيمي ح نورة التركي ح
- نوره الدرخي ح
- نورة المزروع ∢
- نوف الحميضي ٢
- هيفاء الوايلي <

✤ Boys team:

- بدر الشهري 🗸
- حمید حمید 🔇
- سهیل باسهیل 🖌
- عمر الغامدي <
- مهند القرني 🛛
- نايف السبر <
- ✤<u>Team leaders:</u>
 - ديما المزيد رائد العجيري
 - @Biochemistry438

