

Color code: Important in red Extra in blue

Natural Defense Mechanisms

For team error adjustments, click here

Objectives

- To know First (non-specific immunity) and second (adaptive immunity) lines of defense
- To understand the Complement system, its activation and how it involves in pathogen killing.
- To recognize the importance of accumulation of inflammatory cells for clearance of infection
- > To know the role of cytokines as mediators which regulate inflammation

The main function of the immune system is to protect from infections:

Viruses e.g. Influenza, Polio

Fungi e.g. *Candida , albicans*

Parasites e.g.

Tapeworms, Malaria

Bacteria e.g. Tubercule bacillus Staphylococci

First and Second Lines of Defense

Nonspecific Defense Mechanisms		Specific Defense Mechanisms (<mark>Immune System</mark>)
First Line of Defense		Second Line of Defense
 Skin. Mucous Membranes. Secretions of both. 	 Phagocytic WBCs. Antimicrobial proteins. The Inflammatory Response. 	Lymphocytes (T Cells and B cells) Antibodies (Secreted from B Lymphocytes)

*There are 3 lines of defense but these two are more common. *Monocytes circulate in blood and when they become macrophages in infectious tissues, they <u>cannot revert</u> back.

Non-specific Defense Mechanisms

Inflammation

Definition: Inflammation is the first response of the immune system to infection or irritation.
 It consist of a series of vascular & cellular changes that occur in response to various stimuli.
 E.g. infections, injury, radiation etc.

Goals of inflammation:

- 1. Prevent and limit infection and further damage
- 2. Interact with adaptive immune system

For example, Monocytes / Macrophages serve as a link between the adaptive and innate Immunity by antigen presentation

3. Prepare the area of injury for healing

Microbial infections initiate inflammations

As bacteria possess an array of pro-inflammatory molecules:

E.g. Lipopolysaccharides (LPS) Superantigen in gram-negative bacteria (endotoxin).

The Complement system

- → Consists of a group of serum proteins initially present in <u>inactive</u> form (pro-enzymes) and produced in liver.
- → Activation occurs in cascade (one component or more activating another) after enzymatic cleavage. Once components become activated they produce important biological effects that initiate inflammation.
- → This system plays an important role in linking Innate & Adaptive immunity

3 Pathways of activation:

All the three pathways are responsible for the cleavage (activation) of C3 convertase.

A) Classical. (Requires antigen-antibody binding)	B) Lectin. (Activated by mannan binding protein binding mannose groups (not	C) Alternative (Activated by bacterial products)	will cause it to break into smaller parts (C5a and C5b). C5a will <u>diffuse into cell</u> <u>tissues</u> and C5b will <u>adhere to the</u> <u>bacterial cell wall.</u>
binding)	found in humans) of bacterial carbohydrates)		For lab analysis: we check C4 and C3 . In the case of low C4 and low C3 > Classical Activation (low because they were activated).
(<mark>C1</mark> ,C4,C2,C3,C5,C6,C 7,C8,C9)	(<mark>C4,C2</mark> ,C3,C5,C6,C7,C 8,C9)	(C3,C5,C6,C7,C8,C9)	In the case of low C3 only> Alternative activation. component breakage (a and b) happens until C5. Afterwards, C5b will bind with C6-9

: Activation of the proteins will decrease

their levels. For example, activation of C5

The Complement System

Process of activation (Biological effects of complement activation):

Recruitment of Inflammatory Cells (Anaphylatoxin functions) a components attract WBCs & trigger an inflammation. (mainly by C3a & C5a)	Opsonization of Pathogens (Coating of bacteria enhances phagocytosis)	Killing of Pathogens (Cell lysis)
 1- Trigger degranulation (granular leukocytes release their substances) 2- Attract additional inflammatory cells 3- Induce smooth muscle contraction and increase vascular permeability 	b component attaches to bacterial cell walls, inviting phagocytes to do their job efficiently. (mainly by C3b but to a lesser extent C4b)	Membrane Attack Complex (C5b-9) (Illustrated in next slide)

The complement system

Membrane Attack Complex Formation:

Insertion of lytic complex into cell membrane, cylindrical in shape.

C5 activation: The (C4b,C2a,C3b) complex works as a C5 convertase which breaks C5 into C5a and C5b.	
Membrane attack complex	
formation (MAC formation):	
1-C5b assembles with C6 and	
: c7 and binds into the : membrane.	
2-C8 binds to the complex.	
: 3-C9 binds and forms the hole in the membrane of the	
pathogen.	

Process of chemotaxis: is the directional movement of an organism (WBCs) in response to a chemical stimulus (substances released by leukocytes).

Cells Attracted to Inflammation Site

Are weak phagocytes

Phagocytosis

After they reach the inflammation site, phagocytic cells (neutrophils & macrophages) start the process of **phagocytosis:** The process by which a cell **engulfs** a solid particle such bacteria to form internal vesicle known as phagosome. Note: First, the invader gets phagocyted, then engulfed in phagosomes. After that, lysosomes fuse into the phagosome to process the invader. What's left of it is residual bodies that leave the phagocytic cell through exocytosis.

Cytokines

They are <u>Soluble</u> molecules, produced by <u>different cells</u>, that control cell functions e.g. <u>differentiation</u>, <u>proliferation activation</u> or inhibition.

01	Interleukins	 Produced primarily by macrophages and lymphocytes in response to a pathogen. Many types, e.g. IL-1, IL-2, IL-3 etc
02	Interferons	 Protects against viral infections Produced and released by virally infected cells in response to viral infections.
03	Tumor necrosis	 Secreted mainly by macrophages Induces fever by acting as an endogenous pyrogen (substance released from inside the body that produces fever)
		 Increases synthesis of inflammatory serum proteins Increase expression of adhesion molecules on endothelial cells and vascular permeability

Take home message

- Non-specific (innate immunity) acts as a first line of defense against invading pathogens.
- Innate immunity is an important initial step for generation of adaptive immune response.
- Inflammation is vital for controlling infection and limiting tissue damage.

Quiz:

1. What is the main function of interferons?

- a) Induce fever
- b) Protects against viral infections
- c) Increase expression of adhesion molecules
- d) Increase synthesis of inflammatory serum protein

2. C3a and C5a are responsible for:

- a) Anaphylatoxin functions
- b) cell lysis
- c) coating of bacteria
- d) None of the above

3. Which type of cytokines acts as endogenous pyrogen?

- a) Interferons
- b) Interleukins
- c) TNF
- d) All of the above

4. Which component is mainly involved in phagocytosis?

a) C3b
 b) C4b
 c) C5b
 d) C4a

5. Which one of the following requires antigen-antibody binding?

- a) Classical pathway
- b) Lectin pathway
- c) Alternative pathway
- d) None of the above
- 6. Which of the following is considered the second line of defense
 - a) Lymphocytes
 - b) Phagocytic WBCs
 - c) Antibodies
 - d) A and C

Team Leaders:

Sedra Elsirawani

<u>Ibrahim Aldakhil</u>

Team Members:

- I. Noura Alturki
- 2. Lama Alzamil
- 3. Shahad Althaqeb
- 4. Leena Alnassar
- 5. Joud Aljebreen
- 6. Renad Alkanaan
- 7. Shahad Bin Selayem
- 8. Sara Alflaij

- 1. Alwaleed Alsaleh
- 2. Muhannad Makkawi
- 3. Abdullah Basamh
- 4. Hashem Halabi
- 5. Amjad Albaroudi
- 6. Abdulrahman Alhawas
- 7. Mohammed Alhuqbani

