



Version 2

# **Bacterial structure and genetics**

-Important -Extra -Notes -In boy's slides -In girl's slides



# **Objectives:**

★ Define the cellular organization of bacteria and recall the differences between Eukaryotes and Prokaryotes.

\*\*والطالبات في هذه المحاضرة

- ★ Recall major structures of bacteria and its function.
- ★ Describe the structure of cell wall of bacteria including the differences between Gram positive and Gram negative bacteria and main functions.
- ★ Describe the external and internal structures of bacteria and their functions.
- ★ Describe bacterial spores and its application in the practice of medicine.
- ★ Recall basic information about bacterial genetics and replication of bacteria .
- ★ Describe plasmids , its origin , types and its importance in clinical practice.
- ★ Recall genetics variations, including ; mutation and mechanisms of gene transfer and its implication on bacterial resistance to antimicrobial agents.



### Shapes & Types of Bacteria

### **Arrangements of Bacteria**

### Arrangements among Cocci:







### \_\_\_\_\_

# **Cell Wall of Bacteria**

★ Bacteria are cells with <u>rigid</u> cell wall surround cytoplasmic membrane and internal structures.

### Functions of cell wall:

- ★ Rigidity.
- $\star$  Protection.
- ★ Gives the shapes of bacteria.
- ★ Cell division.

- ★ Porous / permeable to low molecular weight molecules.
- ★ Antigenic determinants.

Polystructure composed of polysaccharide and protein function in identification (immune system)

### **Chemical structure of bacterial cell wall:**

Peptidoglycan : " very imp chemical structure"

Rigid part , mucopeptide composed of alternating strands of <u>N- acetyl muramic</u> <u>acid</u> and <u>N- acetyle glucosamine</u> linked with peptide subunits.



# **Gram Staining**



# **Types of bacteria**



|                                                                                                                                                                     | -                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GRAM +VE BACTERIA                                                                                                                                                   | GRAM -VE BACTERIA                                                                                                                                                                                                                         |
| • stain blue/purple by Gram stain                                                                                                                                   | • stain red by Gram stain                                                                                                                                                                                                                 |
| • Thick peptidoglycan                                                                                                                                               | • Thin peptidoglycan                                                                                                                                                                                                                      |
| • Contains:<br>Teichoic acid : anchors cell<br>vall to cell membrane ,<br>pithelial cell adhesion.<br>Antigens : polysaccharides<br>Lancefield), protein (Griffith) | <ul> <li>Outer membrane that<br/>contains :         <ul> <li>specific proteins (porins)<br/>important in the transport of<br/>hydrophilic molecules             <ul> <li>lipopolysaccharide<br/>(ENDOTOXIN)</li></ul></li></ul></li></ul> |
| • Closely associated with cytoplasmic membrane.                                                                                                                     |                                                                                                                                                                                                                                           |







### **External structures of bacteria**

### ★ Flagella:

- Helical filaments in shape.
- Composed of FLAGELLIN (protein).
- Found in both Gram (+) & Gram (-) bacteria.



Polar/ Monotrichous – single flagellum at one pole

Lophotrichous – tuft of flagella at one pole

Amphitrichous – flagella at both poles

Peritrichous – flagella all over

- Structure of Flagella:
- Basal body: is a protein as rings on central rod.

#### (4 in Gram - & only 2 in Gram +)

The outer pair of rings it's only in Gram - ( pushed through outer membrane).

Inner pairs are inserted into peptidoglycan & cytoplasmic membrane.

- Hook: a bent structure act as joint.
- Long Filament: Flagellin protein.



 $\star$  Distribution:



- Monotrichous
- Lophotrichous
- Peritrichous



- ★ Function of Flagella:
  - motility & chemotaxis.

### **External structures of bacteria**

| Organelle                      | Shape                                                         | Composition                                                                             | Found in                                                                                             | Types                                                                                    | Function                                                                                                                                                       |
|--------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pili                           | Fine short<br>filaments                                       | Pilin (protein)                                                                         | On the surface of<br>Gram +ve & Gram -ve<br>bacteria.<br>(extruding from<br>cytoplasmic<br>membrane) | -Common pili (fimbriae):<br>covers the surface.<br>-Sex pili : in some bacteria<br>only. | -Common pili:<br>responsible for:<br>adhesion & colonization.<br>-Sex pili responsible<br>for conjugation.                                                     |
| Capsules<br>and slime<br>layer | structures<br>surrounding<br>the outside of<br>cell envelope. | Polysaccharide<br>(in most bacteria)<br>Polypeptide<br>"Protein" (in<br>some bacteria). | some strains within<br>species produce<br>capsule while others<br>do not .                           | -                                                                                        | -Attachment<br>-Protection from<br>phagocytic engulfment.<br>-Resistant to dryness.<br>-Reservoir for certain<br>nutrient.<br>*not essential for<br>viability. |

### Cytoplasmic Membrane (plasma membrane)

Double layered structure composed of phospholipid & protein.

Act as semi- permeable membrane (passive diffusion).

Site of numerous enzymes involved in active transport of nutrients and various metabolic processes.



#### **Small Portion of a Plasma Membrane**

# **Internal Structures of Bacteria**

### **Spores of Bacteria**

Small ,dense, metabolically inactive , non-reproductive structures produced by Bacillus & Clostridium.

- Enables the bacteria to survive adverse environmental conditions. (rigid environments )
- Contain high concentration of **Calcium** dipicolonate.
- Resistant to heat, dissecation & disinfectants.
- Often remain associated with the cell wall.
- Spores germinate when growth conditions become favorable to produce **vegetative cells**.





# **Internal Structures of Bacteria**

### **Spores of Bacteria**

### Application in medical practice :

spore preparations used for checking the efficacy of **Autoclaves**, eg. *Bacillus subtilis & Bacillus stearothermophilus*.

Spores are <u>described</u> as: Terminal spores, Sub-terminal spores, Central spores.



# **Internal structures of Bacteria**

### **Mesosomes**:

convoluted invaginations of cytoplasmic membrane.

### Function:

- Involved in **DNA segregation during cell division & respiratory activity.**
- Contains receptors involved in chemotaxis.
- **Permeability barrier** (active transport of solutes).





### **Internal structures of Bacteria**





# **Bacterial Genetics: definitions**

**Genetics** is the study of inheritance and variation.

- Genetic information encoded in DNA.
  Genotype: the complete set of genetic determinants of an organism.
- •**Phenotype:** expression of specific genetic material .
- •Wild type: reference (parent) strain (لم) الأي طفرة

```
•Mutant: progeny with mutation. (تعرضت) الطفرات وتغيرات
```

#### Function of genetic material:

- 1- Replication of the genome
- 2- Expression of DNA to mRNA then to protein>

![](_page_16_Picture_9.jpeg)

2 types of DNA in bacteria

### Chromosomal

•Extra-chromosomal (Plasmid). (found in the bacterial cytoplasm and nobody know where it come from)

<u>Genetic variation in bacteria takes place by:</u>

**1- Mutations** 

2-Gene transfer

![](_page_17_Picture_0.jpeg)

DNA types in the bacteria

### Extra-chromosomal

(Plasmid). (الخلية بدونها ممكن تعيش)

- Haploid, circular molecule of double stranded-DNA attached to cell membrane.
- No nuclear membrane (prokaryotes).
- DNA a double helical structure, genetic code in Purine and Pyrimidine bases of nucleotides that makes DNA strand. (like human A T G C )
- 3 bases comprise one code, each triplet codon codes for one amino acid.
- Replication is semi-conservative

**R-plasmids**: genes code for antibiotic resistance particularly Gram negative bacteria. **Col-plasmids:** in Enterobacteria, codes for extracellular toxins.

Type of

plasmids

• Extra chromosomal DNA composed of double stranded-DNA. (in the cytoplasm) • Found in most species of bacteria. Origin? (unknown) Govern their own replication •Application :Genetic exchange, amplify (مثل الهندسة الوراثية) genes. Transfer by conjugation ( تزاوج ) • Unrelated plasmids coexist together only. (في الخلية الوحدة ممكن يكون فيها أكثر من نوع) هي التي تجعل الخلية عدوانية ووحشية .

**F-plasmids:** (fertility) factor, transfer of chromosome during mating.

# **Plasmids**

![](_page_18_Picture_1.jpeg)

![](_page_18_Picture_2.jpeg)

One Bacteria can have more than one type of plasmids

## **Mutation**

- Inheritable changes in the structure of genes (DNA).
- Chemical changes in one or more bases of DNA.

### Mutation /gene defect leads to alteration in:

- Transcription,
- Amino acid sequences,
- Function eg. Bacteria resistant to antibiotic.

Mutation Causes Antimicrobial Resistance —

![](_page_19_Figure_8.jpeg)

Genetic variation in bacteria

Mutation

Gene transfer

1.

2.

## **Mutation**

### **Classification of Mutations:**

### Depends on biological sequencing:

| <u>Resistance mutation</u>  | affects structure of cell protein. Main application in<br>medical practice.<br>Bacteria become resistant to antibiotics |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------|
| <u>Auxotrophic mutation</u> | affects biosynthetic enzyme resulting in a nutritional requirement of mutant cell.                                      |
| <u>Lethal mutation</u>      | Leads to death of bacteria.                                                                                             |

# Gene transfer among bacteria (another way to change the genetic material other than mutations)

| Transformation                                                                                                             | Transduction                                                                                                                                                                        | Conjugation                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A <mark>fragment</mark> of exogenous naked bacterial<br>DNA are taken up and absorbed into<br>recipient cells.             | Phage mediated transfer of genetic<br>information from donor to recipient<br>cells.                                                                                                 | Major way bacteria acquire<br>additional genes.<br>Cell contact required and genes<br>reside on plasmid resident<br>within donor cells transfer to<br>recipient cell ( <b>mating</b> ).<br>Mediated by plasmid called F |
| Common in <u>Haemophilus influenzae</u> & <u>Streptococcus Pneumoniae</u> .<br>★ Bacteria becomes resistant to Ampicillin. | Beta – Lactamase production in<br><u>Staphylococcus aureus</u> : Bacteria<br>becomes resistant to penicillin.<br>Toxin production by <u>Corynebacterium</u><br><u>diphtheriae</u> . | Gene encode changes in surface<br>by producing a sex pilus .This<br>facilitates capture of F- cells and<br>the formation of a conjugation<br>bridge through which DNA<br>passes from F + into F- cells.                 |
| a Bacterial transformation<br>Release of<br>DNA<br>Donor cell<br>Donor cell<br>Recipient cell                              | b Bacterial transduction                                                                                                                                                            | C Bacterial conjugation                                                                                                                                                                                                 |

## **Genetic Recombination:**

An enzyme that destroys any foreign material

After gene transfer, there are **three** possible fates:

1-Exogenous DNA degraded by <u>nuclease.</u>
2-Stabilized by circulation and become plasmid.
3- Form a partially hybrid chromosome with segment derived from each source.

## MCQs:

1/ Which of the following is incorrect? Bacteria have..

| a) no mitochondria     |
|------------------------|
| b) no sterols          |
| c) no nuclear membrane |
| d) no plasmids         |

2/Tapered end bacteria are called:

a) bacilli b) cocci c) fusiform d) vibrio

3/Cocci bacteria arranged in Palisades are called:

a) staphylococcib) corynebacteriumc) streptococcid) coccobacilli

4/Flagella distribution which is characterized by having only one at each pole is:

a) peritrichous b) monotrichous c) lophotrichous d) amphitrichous

5/Bacteria replication takes place by..

a) meiosisb) mitosisc) binary fissiond) none of the above

6/Bacillus & Clostridium are resistant to heat, desiccation & disinfectants due to..

| a) high conc of Na              |  |
|---------------------------------|--|
| b) high conc of Ca dipicolinate |  |
| c) low conc of Na               |  |
| d) low conc of Ca dipicolonate  |  |

9/8 2/C 4/D 3/8 5/C

## MCQs:

7/The type of plasmid that codes for extracellular toxins that can kill other bacteria is..

a) R plasmidb) Col plasmidc) F plasmidd) None of the above

8/Outer membrane layer of cell wall is found in..

a) gram +veb) grams -ve

c) both

d) neither

9/How many chromosomes are there in bacteria?

a) 1 b) 2

c) 46

C) <del>-</del>

d) 23

10/Which of the following gene transfer mechanisms is common in Haemophilus influenzae & Streptococcus Pneumoniae.

a) transductionb) transformationc) conjugationd) lysis

11/Antigenic determinants are found on:

a) cell wall b) plasmid c) plasma membrane d) DNA

12/Porins are found in..

| a) gram -ve | ¥/21               |
|-------------|--------------------|
| b) gram +ve | ∀/ll               |
| c) both     | 10\ <mark>B</mark> |
| d) neither  | ∀/6                |
| u) heither  | <mark>8/8</mark>   |
|             | 2/ <u>B</u>        |

## T or F:

# SAQ:

1/Peptidoglycan in gram positive bacteria is thinner than Gram negative bacteria

T/F

2/Antigens: anchor cell walls to cell membranes and are responsible for epithelial cell adhesion.

T/F

3/The bacterial chromosome is diploid linear and single-stranded

T/F

4/Bacteria can survive without plasmids.

T/F

1/What is the name of the bacteria that naturally has no cell wall? -

2/Alternating strands of N- acetyl muramic acid and Nacetyl glucosamine linked with peptide subunits, Make up..

3/What is the most common way genes resistant to antibiotics transfer among bacteria in hospitals?

4/When the gene is Stabilized by circulation in Genetic Recombination it becomes..

1/Mycoplasma 2/peptidoglycan 3/Conjugation 4/plasmid

# **Team Leaders:**

|                                                        | \star بدر القرني                                                                                                                         |                 | جنبن الصميل ،                                                                                                                   |       |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------|-------|
| Members:                                               | -                                                                                                                                        |                 |                                                                                                                                 |       |
| فيصل ع. الزهراني<br>الوليد العازمي<br>عبدالله الحوامدة | عبدالرحمن البديوي<br>مهند أحمد<br>فيصل القبلان<br>عيدالله العثمان<br>عبدالعزيز دهمش<br>بدر المهناء<br>عبدالله العيسى<br>عبدالرحمن الحواس | * * * * * * * * | سارة يوسف الفليج<br>أميرة الزهراني<br>غادة السدحان<br>بجود العلي<br>جود الخليفة<br>دينا عورتاني<br>ريم بن ادريس<br>ريناد المطوع | ***** |
| Contact us:                                            | محمد الشويعر<br>نايف سعود                                                                                                                | *               | طيبة الزيد<br>لينا النصار                                                                                                       | *     |

میسون آل تمیم

سارة الخليفى

\star 🛛 نورة المزروع

 $\star$ 

\*

فارس المبارك

عبدالله النويبت

 $\star$ 

\*

MicrobiologyTeam438@gmail.com

@Microbiology438

 $\star$