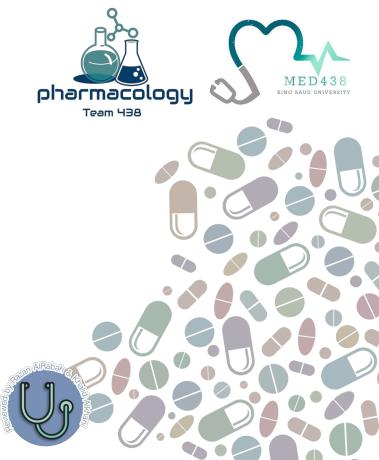
Lecture (3)


Metabolism

- Black : in male / female slides
- Pink : in girls slides only
- Blue : in male slides only
- Green : notes, Extra

Editing File:

https://docs.google.com/document/d/1WvdeC1atp7 J-ZKWOUSukSLsEcosjZ0AqV4z2VcH2TA0/edit?usp=shar ing

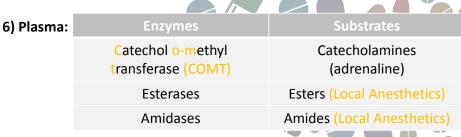
Objectives:

- Recognize the importance of biotransformation.
- Know the different sites for drug metabolism.
- Define the major phase I and phase II metabolic reactions.
- Describe the modulation of liver microsomal enzymes by inducers and inhibitors.
- Mention two drugs that are known as enzyme inducers and inhibitors
- Know the impact of first pass metabolism on drug bioavailability

Drug Metabolism (biotransformation)

chemical reactions which occur in the body to change drugs from nonpolar lipid soluble forms to polar water-soluble forms that are easily excreted by the kidney.

Importance:


- Inactivation or termination of drug action (most drugs).
- Detoxification biotransformation is required for protection of body from toxic metabolites.
- Activation of prodrug (convert inactive form of drug to active form) a pro drug is a drug that's
 e.g. levodopa → carbidopa, prednisone → prednisolone
 taken in the inactive form to be activated inside the body

Organ sites of drug metabolism:

1) Liver (major site)	2) Kidney	3) Skin	4) Lung

5) Intestinal Mucosa and Lumen: Gut Mucosa: MonoAmine Oxidase (MAO)

Gut Lumen (bacterial flora): Glucouronidase

Cellular sites of drug metabolism:

1) Cytoplasm:

e.g. Alcohol dehydrogenase: oxidation of alcohol NAD⁺ \rightarrow NADH

Alcohol \rightarrow Aldehyde \rightarrow Acid Ethanol \rightarrow Acetaldehyde \rightarrow Acetic Acid

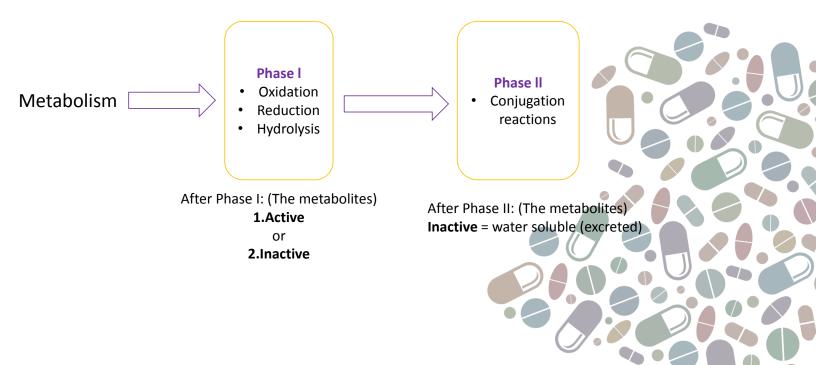
2) Mitochondria:

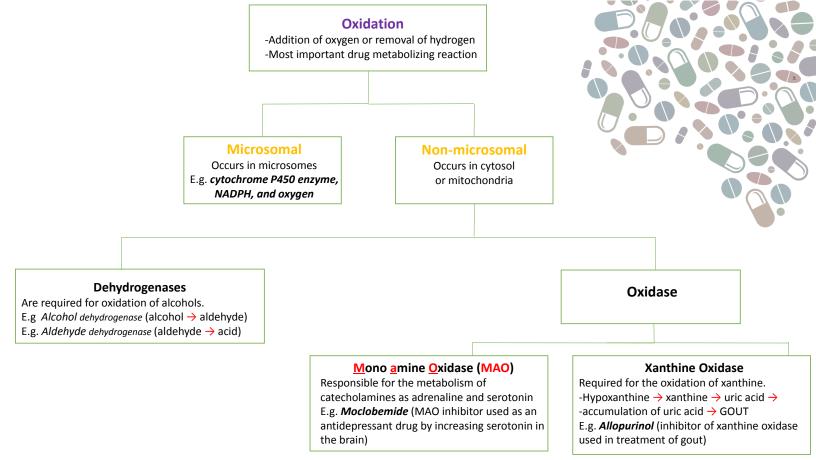
- N-acetyl transferase: introduction of acetyl group (CH₃COO)
- MonoAmine Oxidase enzyme (MAO): oxidation of catecholamines as adrenaline

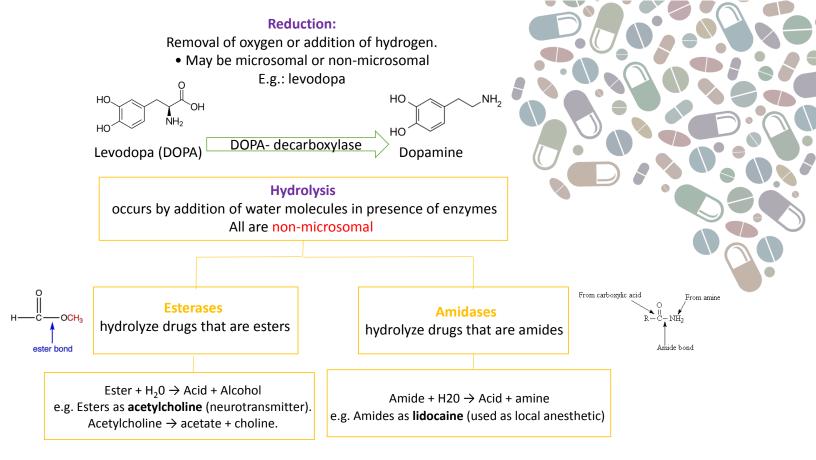
3) Microsomes:

- Microsomal enzyme system = Cytochrome P-450.
- There are more than 20 families CYP1, CYP2, CYP3.
- Sub-families are identified as A, B , and C etc.
- In humans: only 3 isoenzyme families are important: CYP1, CYP2, and CYP3.

4) Lysosomes


Oxidation – Cytochrome P-450


CYP 3A4/5 carry out biotransformation of the largest number of drugs (30-50%). Expressed in liver and intestine (responsible for first pass metabolism at this site).



Types of hepatic metabolic reaction

Two phases of hepatic metabolism reactions

Phase I result in:

- Activation of pro-drug
- e.g. levodopa to dopamine.
- Inactivation of drug (termination of action).
- Conversion of active drug to active metabolite.
- Conversion of nontoxic drug to toxic metabolite.

Paracetamol \rightarrow hepatotoxic metabolite (hepatic necrosis)

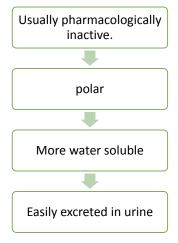
• Product might undergo phase II

Phase II Conjugation reaction:

Conjugation of metabolite (coming from phase I) with endogenous substance as methyl group, acetyl group, sulphate, amino acid or glucouronic acid to produce conjugate that is water soluble and easily excreted in urine or bile.

Types of conjugation reaction:

Conjugation reaction	Enzyme required
glucouronide conjugation	Glucouronyl transferase
Acetylation (CH ₃ COO ⁻)	N-acetyl transferase
Sulphation (SO ₄ ²⁻)	Sulfo transferase
Methylation (CH ₃)	methyl transferase
Amino acids conjugation	Glycine conjugation


Most important one

Phase II metabolic reactions :

-All are non-microsomal except glucouronidation -Glucouronide conjugation is a microsomal process (the most common of phase II reactions). -Deficiency of glucouronyl transferase enzyme in neonates may result into toxicity with chloramphenicol (Gray baby syndrome).

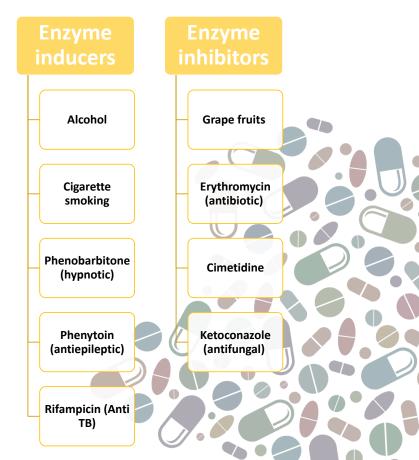
اسم الدواء مهم

Characteristics of Phase II product:

Factors affecting metabolism :

- AGE: \downarrow rate of metabolism in neonates & elderly.
- **DISEASES**: $\mathbf{\downarrow}$ rate of metabolism in liver diseases.
- Degree of Protein Binding : \downarrow rate of metabolism.
- Concurrent use of drugs : Induction & inhibition.
- Nutrition: malnutrition $\mathbf{\downarrow}$ rate of metabolism.
- Genetic polymorphism: Existence of different forms of me enzymes.

E.g. metabolism of Isoniazid (anti-TB)

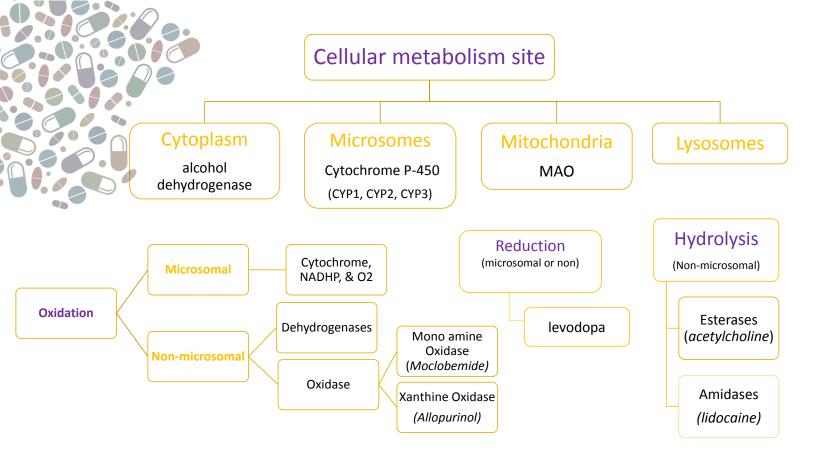

Slow acetylator phenotype: decrease in metabolism of popiazid \rightarrow accumulation of isoniazid \rightarrow risk of peripheral neuropathy Rapid acetylator phenotype: excess metabolites \rightarrow risk of Hepatitis

Enzyme Induction & inhibition

Liver microsomal enzymes inducers : drugs that increase activities of liver microsomal enzymes & increase the metabolism of drug itself and other drugs taken with the inducer at the same time.

Liver microsomal enzymes inhibitors : drugs that decrease activities of liver microsomal enzymes & decrease the metabolism of the drug itself and other drugs taken concurrently.

اسماء الادوية هنا مهم حفظها



Enzyme induction may result in:

- **↑** the **metabolism** and **excretion** of the inducer drug itself and co-administered drugs.
- \downarrow the action of the inducer drug itself & co-administered drugs.
- **Tolerance may occur**: decrease in the pharmacological action of the drug by repeated administration .
- Drug interactions may occur: decrease in action of one drug by administration of another drug.
 - e.g. oral contraceptives & phenytoin (inducer)
 - Failure of oral contraceptive may lead to pregnancy if combined with phenytoin.

Enzyme inhibition may result in:

- Uelay the metabolism and excretion of the inhibitor drug and co-administered drugs.
- \uparrow Prolong the action of the inhibitor drug & co-administered drugs.
 - e.g. warfarin & erythromycin (inhibitor).
 - Inhibition of warfarin metabolism may increase its anticoagulant effect (bleeding).

		Enzyme inducers	Enzyme inhibitors
onjugation reaction	Enzyme required	Alcohol	Grape fruits
ucouronide conjugation	Glucouronyl transferase	Cigarette	Erythromycin
Acetylation (CH ₃ COO ⁻)	N-acetyl transferase	smoking	(antibiotic)
Sulphation (SO ₄ ²⁻)	Sulfo transferase	Phenobarbitone (hypnotic)	Cimetidine
Methylation (CH ₃)	Methyl transferase	Phenytoin	Ketoconazole
mino acids conjugation	Glycine conjugation	(antiepileptic)	(antifungal)
		Rifampicin (Anti TB)	

Which of these is an enzyme inhibitor?

	•						
Allopurinol	Ketoconazole	Rifampicin	Phenobarbitone				
Which of these affect metabolism?							
Age	Metabolism of Isoniazid	Erythromycin	All of the above				
Where is MAO metabolized?							
Cytoplasm	Mitochondria	Microsomes	Lysosomes				
Example of a pro drug							
Moclobemide	Warfarin	Prednisone	None of the above				
What is the name of Xanthine oxidase inhibitor?							
What is an example of a an antiepileptic?							

Good luck

Thanks to the pharma team 435

PHARMACOLOGY 435

Girls team leader

Nouf Alshammari

Girls team members

Reema Almutawa Njoud Almutairi Najla Alkilani Shahad Althaqeb Shahad Alsahil Deana Awartani Joud Alkhalifah Reema Alserhani Noura Almazrou

Boys team leader

Omar Alghadir

Boys team members

Abdulaziz Alghamdi Alwaleed Alzunaidi Abdulrahman Bedaiwi Mohsen Almutairi Bader Aldhafeeri Abdullah Alassaf Bassem Alkhuwaitir Nasser Almutawa Ziyad Alshareef Mohammed Alshehri