Lecture (5)

Pharmacodynamics I

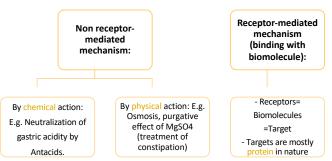
• Red : important

- Black : in male / female slides
- Pink : in girls slides only
- Blue : in male slides only
- Green : notes, Extra

Editing File:

https://docs.google.com/document/d/1W vdeC1atp7J-ZKWOUSukSLsEcosjZ0AqV4z2VcH2TA0/edi t?usp=sharing

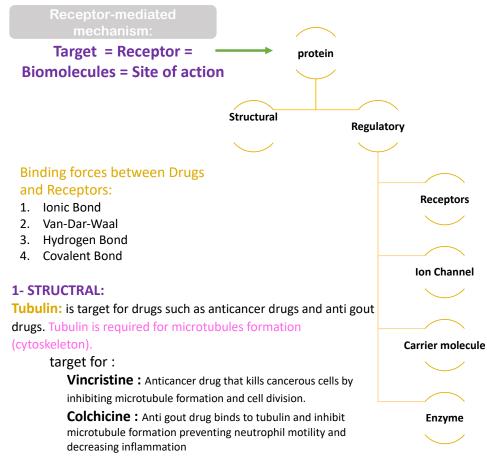
Objectives:


- Identify different targets of drug action
- Differentiate between their patterns of action ; agonism vs antagonism
- Elaborate on drug binding to receptors

What is Pharmacodynamics?

Study of biochemical and physiological effects of drugs and their mechanism of action.

The mechanism of action Based on the drug target site:



Receptor: a special target macromolecule that binds to the drug to produce pharmacological actions.

Where are receptors located?

- Cell membrane
- Cytoplasm
- Nucleus

2- REGULATORY:

1-ENZYMES:

The drug competes with the natural substrate for the enzyme.

E.g. Anticholinesterases inhibit acetyl cholinesterase thus producing cholinomimetic action.

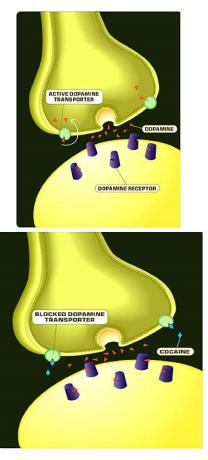
A- Reversible: Neostigmine reversibly competes with ACH for acetyl cholinesterase at motor end plate (neuromuscular junction). (Effect lasts for short duration of time) B- Irreversible: Organophosphates irreversibly competes with ACH for acetyl cholinesterase. (Effect lasts forever)

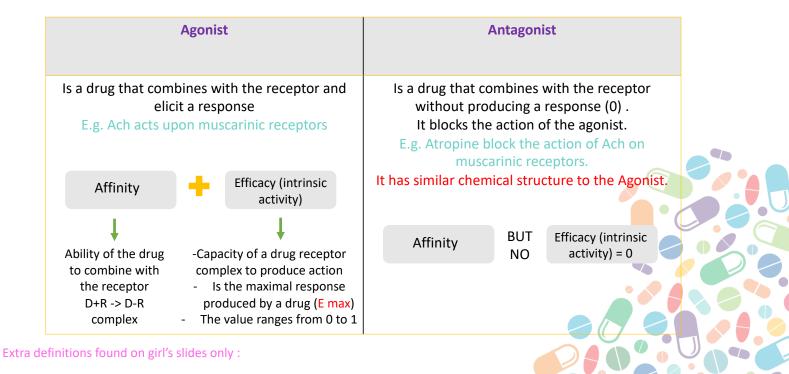
2-ION CHANNEL:

- Responsible for influx or out-flux of ions through cell membranes.
 - They are activated by alteration in action potential.
 - Drugs bind to alter channel function (opening or blockade) E.g.:

A-Local Anesthetics: block sodium Na⁺ influx through Na⁺channel in nerve fibers. (Na⁺channel Blockers) B-Sulfonylurea drugs (Antidiabetic drug): Block potassium K⁺channel in pancreatic beta cells, resulting in depolarization and opening of calcium channels and insulin secretion.

3-CARRIER MOLECULES:


Responsible for transport of ions and small organic molecules between intracellular compartments, through cell membranes or in extracellular fluids. The drug binds to such molecules altering their transport ability.


A- Digoxin:

blocks **efflux** of Na⁺via Na⁺/K⁺ pump (Na⁺/K⁺-ATPase). Used in the treatment of heart failure. (drugs used for treatment of heart Failure increase the contraction of the heart)

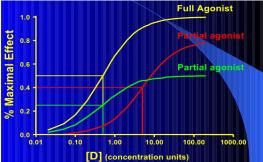
B- Cocaine:

blocks transport or reuptake of catecholamines mainly Dopamine at synaptic cleft. The dopamine transporter can't perform its reuptake function therefore dopamine accumulates in the synaptic cleft producing Euphoria.

Affinity is the capacity of a drug to form a complex with the receptor(DR complex) **Efficacy**(Intrinsic activity) the ability of the drug once bound to the receptor to trigger response

Antagonist having full affinity to the receptor but no intrinsic activity

Types of Agonist:


	-	
Full Agonist	Partial Agonist	
A drug that combines with its specific receptor to produce maximal effect (1) by increasing its concentration E.g. Ach Affinity HIGH Efficacy	Combines with its receptor & evokes a response that's submaximal effect (< 1) regardless of its concentration E.g. pindolol Is a beta blocker which is a partial agonist, produces less decrease in heart rate than pure antagonist such as propranolol.	Partial Agon drugs may c number of r magnitude t
	Affinity PARTIAL Efficacy	differ
		1.0 - 5 0.8 -

Extra definitions found on girl's slides only :

Full agonist having a full affinity to the receptor and a maximal intrinsic activity

Partial agonist having a full affinity to the receptor but with low intrinsic activity

Partial Agonist: Even though the drugs may combine with the same number of receptors, the magnitude they can produce may differ

SUMMARY

Drug	mechanism of action	
antiacids	Neutralization of gastric acidity	
Neostigmine (cholinesterase inhibitor)	competes with ACh for acetyl cholinesterase enzyme at motor end plate (neuromuscular junction).	
Sulphunylurea (anti diabetic)	block K+ outflux via the K channels in pancreatic beta cells resulting in opening of calcium channels and insulin secretion.	
Digoxine (drug of heart failure)	blocks Na efflux via Na pump	
Cocaine	blocks transport or reuptake of catecholamines (dopamine) at synaptic cleft	
vincristine	Anticancer agent	
colchicine	Drug for gout treatment	
Atropine (anticholinergic)	a drug that combines with a receptor without producing responses. It blocks the action of the agonist	
Propranolol (Beta blocker)	a partial agonist, produces less decrease in heart rate than pure antagonists	

QUIZ

Q1/ Receptors are locate	ed on all of the following exc	cept:		
A- nucleus	B- cell membrane	C- ribosomes	D- cytoplasm	
Q2/ Digoxin is a drug us	ed for treatment of heart fai	lure, its mechanism of action	is:	
A- blocking Ca efflux	B-Blocking K efflux	C-Blocking Na efflux		
Q3/ Tubulin is a target for	or which of these drugs?			
A-Cocaine	B- Colchicine	C- Propranolol	D- Digoxin 🧳	
Q4/ dopamine accumula	tion in the synaptic cleft pro	duces:		
A- Heart contraction	B-Euphoria	C- Decreased heart rate		
Q5/Efficacy = 1 when the	he drug is:			
A- Full Agonist	B- Antagonist	C- Partial Agonist		
	1-C 2-C 3-B	4-B 5-A		

Good luck

Thanks to the pharma team 435

PHARMACOLOGY 435

Girls team leader

Nouf Alshammari

Girls team members

Reema Almutawa Njoud Almutairi Najla Alkilani Shahad Althaqeb Shahad Alsahil Deana Awartani Joud Alkhalifah Reema Alserhani Noura Almazrou

Boys team leader

Omar Alghadir

Boys team members

Abdulaziz Alghamdi Alwaleed Alzunaidi Abdulrahman Bedaiwi Mohsen Almutairi Bader Aldhafeeri Abdullah Alassaf Bassem Alkhuwaitir Nasser Almutawa Ziyad Alshareef Mohammed Alshehri