Lecture (7)

Receptor Families

• Red : important

- Black : in male / female slides
- Pink : in girls slides only
- Blue : in male slides only
- Green : notes, Extra

Editing File:

https://docs.google.com/docum ent/d/1WvdeC1atp7J-ZKWOUSukSLsEcosjZ0AqV4z2VcH 2TA0/edit?usp=sharing

Objectives:

- Classify receptors into their main subfamilies
- Recognize their different transduction mechanism
- Identify the nature & time frame of their response

• Development of new drugs

Receptor

A Receptor structure :

- Ligand recognition site
- Inner catalytic domain

https://www.youtube.com/watch?v=WORIhbaRABg

https://www.youtube.com/watch?v=i7_VTkhR3UI

Type I : ion channel-linked receptors (ligand gated ion channel)-(ionotropic receptor)

- Located at cell membrane.
- Directly activated by ligand binding.
- Involved in very fast synaptic transmission.
- Directly related to channels.
- Response occurs in milliseconds.
- *E.g. nicotinic receptors activated acetylcholine.* Nicotinic acetylcholine receptor is activated by occupancy of a ligand as Acetylcholine

Type II : G-Protein coupled receptors (Metabotropic Receptor)

- The largest family that accounts for many known drug targets.
- Located at cell membrane.
- Coupled to intracellular effectors via G-protein
- Response through ion channels or enzymes.
- Involved in rapid transduction.
- Response occurs in seconds.
- E.g. Muscarinic receptors of Ach (M)
- E.g. Adrenergic receptors of Noradrenaline (α and β receptors)

Type II : G-Protein coupled receptors

- GTP-binding Regulatory proteins.
- Regulates guanine nucleotides GDP,GTP.
- Comprise of 3 subunits ($\alpha \beta \gamma$), α subunit possess GTPase activity.
- When agonist binds to the receptor, G-protein is activated, the α-subunit dissociates & and is then free to activate an effector.
- Activation of the effector is terminated when the bound GTP molecule is hydrolyzed to GDP which allows α -subunit to recombine with ($\beta \gamma$) and return to its inactive state.

Type II : G-Protein coupled receptors

Targets for G-Proteins:

1) Ion channels:

Can open or close ion channels causing change in the excitability e.g. muscarinic receptors in heart (K-channel) Ach acts on muscarinic receptors to produce a <u>decrease in heart rate</u> by <u>opening of K channel</u> and <u>increasing K efflux</u> (hyper-polarization)

Second Messengers (ENZYMES):

2) Adenyl cyclase enzyme (AC): Cyclic AMP system (cAMP)

1P) adenosine monophosphate

*cAMP = cyclic

Activation of Adenyl Cyclase \rightarrow ATP will be converted to \rightarrow cAMP \rightarrow phosphorylation of protein kinase A (PKA) \rightarrow Active PKA \rightarrow

 \hat{I} Lipolysis \hat{I} Glycogen breakdown to glucose \hat{I} Ca⁺² (force of contraction of heart)

Glycogen synthesis

3) Phospholipase C enzyme: Inositol phosphate system (IP3+DAG)

Once Phospholipase C is activated it will break Phosphoinositol diphosphate (PIP2) into:

- Inositol triphosphate (IP3) $\rightarrow \hat{I}$ Intracellular Ca⁺² $\rightarrow \hat{I}$ Secretion of exocrine glands \hat{I} Heart rate Smooth muscle contraction.
- Diacylglycerol (DAG) \rightarrow Stimulation of Protein Kinase C (PKC) \rightarrow Ion Channels Smooth muscle contraction.

PLC= Phospholipase-C PIP2 =Phosphotiydl inositol 4,5 di phosphat IP3 =Inositol tri phosphate DAG = Diacylglycerol E= Ezyme PKC = Phosphokinase -C

Classes of G-Proteins

- Divided according to their α-subunits into **Gs**, **Gi**, and **Gq**
- 1- Gs: stimulation of Adenyl Cyclase
- 2- Gi: inhibition of Adenyl Cyclase
 - 3- Gq: linked to activation of phospholipase C PLC-IP3 - Ca⁺⁺ CaM & PKC)

Classes of Receptors:

ADRENOCEPTORS	CHOLINERGIC RECEPTORS		
a_1 Adrenoceptors couple to G_q to stimulate (PLC) (phospholipase c)	M₁ & M₃ Ach receptors couple to G_q to stimulate PLC (phospholipase c)		
$\alpha_{\text{2}} \text{Adrenoceptors couple to } \textbf{G}_{i} \text{ to inhibit AC}$ (adenylyl cyclase)	M ₂ & M ₄ Ach receptors couple to G _i to		
$\beta_{1\&2}$ Adrenoceptors couple to \boldsymbol{G}_s to stimulate (AC)	inhibit AC (adenylyl cyclase)		
Adr Inhibitory Receptor Ci Ci Ci Ci Ci Ci Ci Ci Ci Ci	Ach Stimulatory Receptor Ga PIC Ga PIC Ga PIC Ga Ga Bronchi ↑ Ca		
same drug different receptor opposite effect the same effector by different g proteins	different drugs different receptor same effect same effector same g proteins		
Adrenaline bind to α_2 Adrenoceptors that will activate G_i (Inhibitory) protein. G_i protein will inhibit (AC) that will decrease cAMP Concentration. Decrease contraction Adrenaline bind to β Adrenoceptors that will activate G_s (Stimulatory) protein . G_s protein will activate (AC) that will increase cAMP Concentration. increase contraction	-acetylcholine work on bronchi by M_3 Ach receptor that will activate G_q proteins and G_q proteins will activate (PLC)phospholipase c that will increase ca Concentration. Increase contraction -adrenaline work on blood vessel by a_1 receptor that will activate G_q proteins and G_q proteins will activate (PLC) that will increase ca Concentration.		

TYPE III (Enzyme-Linked receptors) (TYROSINE KINASE-LINKED RECEPTOR)

- Located at cell membrane.
- Linked to Enzyme (with intrinsic enzymatic activity).
- Response occurs in minutes to hours.
- Involved in response to hormones, growth factors.
- They control many cellular functions as metabolism and growth.

Activation of Type III receptors results in Activation of kinases as tyrosine kinase with phosphorylation of tyrosine residue on their substrates and activation of many intracellular signaling pathways in the cell.

E.g. Insulin receptors

kinase (enzyme) does phosphorylation to other molecules & phosphorylation happens to it too.

الفوسفوريلاشين تحصل للكاينايز وايضا هو نفسه يعمل فوسفوريلاشين لحاجات ثانية.

If there is any confusion, Check out this video to learn more about Enzyme-linked receptors https://www.khanacademy.org/testprep/mcat/organ-systems/biosignaling/v/enzyme-linkedreceptors insulin (the drug) does dimerization to the receptor (brings the receptor closer so that it can combine the two parts of the receptor)

Type IV (GENE TRANSCRIPTION RECEPTORS; NUCLEAR RECEPTORS)

- Located intracellularly
- Directly related to DNA (Gene transcription).
- Activation of receptors either increase or decrease protein synthesis.
- Response occurs in hours or days and persists longer.
- Their natural ligands are lipophylic hormones; steroids, thyroids, estrogen.

Gene transcription receptors possess an area that recognizes specific DNA sequence in the nucleus which can bind it. This sequence is called a **Responsive Element [RE]**.

This means that the activated receptors are acting as Transcription Factors [TF] \rightarrow expressing or repressing target genes

mENA

Specific proteins

Biologic effects

The drug-receptor complex binds to chromatin, activating the transcription of specific genes.

Receptor Families

	Type I	Type II	Type III	Type III
Location	Membrane	Membrane	Membrane	Nucleus
Coupling	Direct	G-Protein	Direct	Via DNA
Synaptic transmission	Very Fast	fast	slow	Very slow
Response	milliseconds	Seconds	minutes	Hours or days
Examples	Nicotinic receptors	Muscarinic receptors Adrenergic receptors	Insulin receptors	Estrogen Steroid receptors
Effectors	channels	Channels/ enzymes	Enzymes	DNA

SIGNALING MECHANISMS

QUIZ

1 According to the receptor structure in the cell membrane , the ligand binding site of the receptor are in the

A-intracellular part of the receptor

B-Extracellular part of the receptor

- C-transmembrane area (hydrophobic region of phospholipids)
- D- catalytic domain of the receptor

2-What is the nature of the ligands that bind to type IV receptors ?

A-amphipathic

B-hydrophilic

C-hydrophobic

D-polar ,uncharged

3-Which one of these type of receptors gives the fastest response?

A-Nicotinic receptors B-Muscarinic receptors C-Insulin receptors D-estrogen steroid receptor

4-Which one of these receptors is coupled with Gq protein ?

A-Alfa 1

- **B**-Alfa 2
- **C**-Beta 1
- D-Beta 2

5-Which one of these receptors gives a direct response?

- A- G-protein coupled receptor
- B- Nuclear receptor
- C- Intracellular receptor
- D- Enzyme-linked receptor

6- Inositol phosphate system activate

- A- Protein kinase A
- B- Protein kinase C
- C- Tyrosine kinase
- **D-** Channel proteins

SAQ:

1-List the names of the four types of receptors ,and give examples for each one .

2- Describes the transduction process after activating the G-protein coupled receptors

3- List the main 2 targets for G-proteins ar give examples for each one .

Answers : 1/B , 2/C , 3/A , 4/A , 5/B

Good luck

Thanks to the pharma team 435

PHARMACOLOGY 435

Girls team leader

Nouf Alshammari

Girls team members

Reema Almutawa Njoud Almutairi Najla Alkilani Shahad Althaqeb Shahad Alsahil Deana Awartani Joud Alkhalifah Reema Alserhani Noura Almazrou

Boys team leader

Omar Alghadir

Boys team members

Abdulaziz Alghamdi Alwaleed Alzunaidi Abdulrahman Bedaiwi Mohsen Almutairi Bader Aldahfeeri Abdullah Alassaf Bassem Alkhuwaitir Nasser Almutawa Ziyad Alshareef Mohammed Alshehri