

HOMEOSTASIS (I+2)

438

OBJECTIVES :

- •Define the concept of the "internal environment" and state its physiological importance.
- •Differentiate between the external and internal environments.
- •Define and discuss the concept of homeostasis and its importance to the living organism.
- •Discuss the physiologic control mechanisms that enable maintenance of the normal steady state of the body.
- •Define a feedback mechanism and describe its components.
- •Differentiate between positive and negative feedback mechanisms and give examples for each in the body
- •Understand the concept and importance of homeostasis.
- •Understand how the steady state is monitored.
- •Identify and describe the compensatory responses to any change in the steady state.
- •Identify and describe the disturbances of volumes of ECF and ICF.

THE INTERNAL ENVIRONMENT"MILIEU INTÉRIEUR"

- All the cells in the body are continuously bathing in fluid.
- Because this fluid is *outside* the cell, it is called *extra cellular fluid (ECF)*.
- It is from the ECF that cells get the ions and nutrients needed to maintain life.
- Because, All body cells live in the same environment (i.e. ECF).
- The composition of ECF is almost **similar** between the different species.
- It was named the "*internal environment*" by the French physiologist ClaudeBernard.

ECF = the internal environment.

• The skin separates this environment from the outside

world which known as *the external environment*.

EXTERNAL VS INTERNAL ENVIRONMENT

HOMEOSTASIS

-What is Homeostasis?

It is the ability to maintain a relatively stable internal environment in the changing outside world, (a dynamic state of equilibrium).

• The process by which the body keeps the internal environment constant despite changes in the external environment is known as "Homeostasis".

Purpose: maintain a stable internal environment (ECF = Interstitial).

All different body systems operate in harmony to provide homeostasis.

HOMEOSTATIC CONTROL MECHANISMS

How is this achieved?

Variable \rightarrow Change in body (Stimuli)

There are three interdependent components of control mechanisms:

- 1. Receptor: Stimulation. "Sensory nerves."
- 2. Control center: Set point. "Nervous system / Endocrine system"

3. Effector: Response (The feedback). "Muscle / Gland"

By feedback mechanisms The body has thousands of control

systems.

- They function to restore balance when it is lost.
- Control systems operate;
 - Within the organ itself
 - Throughout the body \rightarrow to control

interrelations between organs.

Ne	Control syst	ems Endocrine	Protection Skin Immune system	
Concentrations of Extracellular and Intracellular				
Electrolytes in	Adults			
Electrolyte	Extracellular Concentration*	Intracellular Concentration*		
Sodium	135–148 mEq/L	10–14 mEg/L		
Potassium	3.5–5.0 mEq/L	140–150 mÉq/L		
Chloride	98–106 mEq/L	3-4 mEq/L		
Calcium	24-31 mEq/L	7–10 mEq/L		
Phosphate /	0.5 - 10.5 mg/dl	< 1 mEq/L		
phosphorus	2.3-4.3 mg/ dl	4 mEq/kg ⁺		
Magnesium	1.8–2.7 mg/dl	40 mEq/kg ⁺		
*17.1	and the second second life	TRACKER & SECTION OF A SECTION		

*Values may vary among laboratories, depending on the method of analysis used.

*Values vary among various tissues and with nutritional status.

Feed back is A loop system in which the system responds to perturbation either in the same direction (*positive feedback*) or in the **opposite direction** (*negative feedback*).

TYPES OF FEEDBACK MECHANISM

1. Negative feedback:

Effector is in <u>opposite</u> direction to stimulus.

Self limiting

More common

2. Positive feedback:

- Effector favors the <u>same</u> <u>direction</u> of the stimulus
- Self augmenting
- Less common

This slide was found only in male slides

EXAMPLE OF THE NEGATIVE FEEDBACK CONTROL

REGULATION OF BODY FUNCTIONS

1) Nervous system:

- Sensory input: detect the state of the body, or the state of the surroundings, it comes through the sensory organs (the eyes, ears..)
- Central nervous system (CNS): determines the required reaction to response to the sensations, and produce a signal.
- MOTOR OUTPUT: Perform the desired action.

2) Hormonal system of regulation:

- Hormones are being secreted from the major 8 endocrine glands (pancreas, thyroid...) in the body to the extracellular fluid and then to all parts of the body to help regulate cellular functions.
- E.g. : insulin is secreted from the pancreas to help control glucose level.
- Slower

• Faster

HOMEOSTATIC IMBALANCE (NEXT SLIDE SUMMARIZES THIS)

It is the disturbance of homeostasis or the body's normal equilibrium.

It basically produces a change in the normal condition of the internal environment.

The homeostasis then will produce a reaction that will either be:

- 1. A successful compensation: homeostasis reestablished.
- 2. Fail to compensate: illness and death

Illness or disease

- Successful compensation
 - Homeostasis
- Failure to compensate
 - Pathophysiology
 - Illness

Figure 1-5: Homeostasis

Wellness

OSMOSIS

Net diffusion of water from a region of high water concentration to region of low water concentration.

In another words : the movement of water from a region of low solute concentration to a region of high solute concentration .

• Osmotic equilibrium is maintained between intracellular and extracellular fluids. Small changes in concentration of solutes in the extracellular fluid can cause tremendous change in cell volume.

Osmolarity = is the measure of solute concentration, defined as the number of osmoles (Osm) of solute per litre (L) of solution (OsmL)

Intracellular osmolarity = extracellular osmolarity . \approx 300 mosm/L

3 Mechanisms for Movement :				
1.Passive	2. Active	Osmosis	pervious lec	
A) Simple Diffusion	A) Primary			
B) Facilitated Diffusion	B) Secondary			

TONICITY

is used to compare between the osmolarities of two or more solutions separated by a semi-permeable membrane

While Osmolarity describes the concentration of one solution

TONICITY VS OSMOLARITY

Tonicity

- Tonicity is the measure of the osmotic pressure gradient between **two** solutions.
- Isotonic solutions almost equal tonicity of the plasma.
- Hypotonic solutions have < tonicity than plasma.
- Hypertonic solutions have > tonicity than plasma.

Osmolarity

- Osmolarity is the measure of solute concentration per unit VOLUME of solvent.
- Measure of **one** given solution
- Normal ~ 300 Osm/Litre

OSMOSIS:

If the environment is:

1. Hypertonic

000

- More solutes Outside
- More water In cell
- > 0.9% (shrink)
- cell loses water

- No change in cell volume
- 0.9% solution of NaCl

3. Hypotonic

- Less solutes outside
- Less water in cell
- < 0.9% (swells)
- cell gains water

GLUCOSE AND OTHER SOLUTIONS ADMINISTERED FOR NUTRITIVE PURPOSES

Who needs it ? People who can not take adequate amount of food

How to give it for them ? Drip slowly

Where to prepare it ? Prepared in an isotonic solution. And water is excreted.

VOLUME AND OSMOLARITIES OF ECF AND ICF IN ABNORMAL STATE

osmolarity نلاحظ هنا ان الطول نفسه بالاثنين volume

Some factors can cause the change :

- dehydration
- intravenous infusion (IV)
- abnormal sweating.
- etc..

Types of change in volume :

1- volume contraction

(removing)

2- volume expansion

(adding)

Volume contraction

Loss of iso-osmatic fluid e.g. Diarrhea

- osmolarity of fluid lost \approx osmolarity of ECF

(loss of isosmotic fluid).

- volume in ECF.

- Varterial pressure.

Loss of hypotonic solution e.g. water deprivation

Hyperosmotic dehydration

- Osmolarity and volume will change .
- Osmolarity in both ECF and ICF.
- Volume in both ECF and ICF.

Loss of hypertonic sol

e.g. adrenal insufficiency

Volume expansion

QUIZ

1/. Glands are considered?				
A) Receptors.	B) Control center.	C)Effectors	D) Hormones	
2/ contraction of uterus is example of?				
A) positive feed back.	B) negative feed back	C) effective reaction	D) slow reaction	
3/ Failure to compensate leads to?				
A) homeostasis	B) illness	C) death	D) either B or C	
4/ Diarrhea is example of?				
A) volume contraction	B) loss of isosmotic fluid	C) gain of isosmotic fluid.	D) both A and B	

Key answers:

- 1) C
- 2) A
- 3) D

D

4)

THANK YOU

Boys team members	Girls team members
• عمر الدوسر ي	• اروى الامام
فنباد الدمسري	• ديما المزيد
• رياد الدومتري	 جود الخليفة
 عبدالله الغامدي 	• جود العتيبي
• محمد الحمد	• رغد المبارك
 عوض العنزي 	• ريناد المطوع
 فيصل القفاري 	• ريما المطوع
• عبدالله باسمح	 طرفة آل كلثم
	• مي بابعير
	• نجود العلي

Team leaders: عمر الشيناوي
ايلاف المسيحل

• نورة المزروع