ARM& ELBOW JOINT

Khaleel Alyahya, PhD, MEd King Saud University College of Medicine @khaleelya

OBJECTIVES

At the end of the lecture, students should:

- ☐ Describe the attachments, actions and innervations of:
 - Biceps brachii
 - Coracobrachialis
 - Brachialis
 - Triceps brachii
- ☐ Demonstrate the following features of the elbow joint:
 - Articulating bones
 - Capsule
 - Lateral & medial collateral ligaments
 - Synovial membrane
- □ Demonstrate the movements; flexion and extension of the elbow.
- List the main muscles producing the above movements.
- Define the boundaries of the cubital fossa and enumerate its contents.

THE ARM

INTRODUCTION

- □ An aponeurotic sheet separating various muscles of the upper limbs, including lateral and medial humeral septa.
- ☐ The lateral and medial intermuscular septa divide the distal part of the arm into two compartments:
 - Anterior compartments
 - also known as the flexor compartment
 - Posterior compartments
 - also known as the extensor compartment

ANTERIOR FASCIAL COMPARTMENT

- Muscles: Biceps brachii, Coracobrachialis & Brachialis.
- Blood Vessels: Brachial artery & Basilic vein.
- Nerves: Musculocutaneous and Median.

MUSCLES OF ANTERIOR COMPARTMENT

BICEPS BRACHII

☐ Origin:

- Long Head from supraglenoid tubercle of scapula (intracapsular)
- Short Head from the tip of coracoid process of scapula
- The two heads join in the middle of the arm

Insertion:

- In the posterior part of the radial tuberosity.
- Into the deep fascia of the medial aspect of the forearm through bicipital aponeurosis.

■ Nerve supply:

Musculocutaneous

☐ Action:

- Powerful flexor of elbow
- Strong supinator of the forearm
 - used in screwing.
- Weak flexor of shoulder

CORACOBRACHIALIS

- ☐ Origin:
 - Tip of the coracoid process
- ☐ Insertion:
 - Middle of the medial side of the shaft of the humerus
- Nerve supply:
 - Musculocutaneous
- ☐ Action:
 - Flexor
 - Weak adductor of the arm

BRACHIALIS

- Origin:
 - Front of the lower half of humerus
- ☐ Insertion:
 - Anterior surface of coronoid process of ulna
- Nerve supply:
 - Musculocutaneous & Radial
- ☐ Action:
 - Strong flexor of the forearm

POSTERIOR FASCIAL COMPARTMENT

Muscles: Triceps

Vessels: Profunda brachii & Ulnar collateral arteries

Nerves: Radial & Ulnar

MUSCLES OF POSTERIOR COMPARTMENT

TRICEPS

☐ Origin:

- Long Head from infrglenoid tubercle of the scapula
- Lateral Head from the upper half of the posterior surface of the shaft of humerus above the spiral groove
- Medial Head from the lower half of the posterior surface of the shaft of humerus below the spiral groove

■ Insertion:

 Common tendon inserted into the upper surface of the olecranon process of ulna

■ Nerve supply:

Radial nerve

☐ Action:

Strong extensor of the elbow joint

CUBITAL FOSSA

- ☐ It is an area of transition between the anatomical arm and the forearm.
- ☐ It is located as a triangular depression on the anterior surface of the elbow joint.

BOUNDARIES OF CUBITAL FOSSA

■ Base

Line drawn through the two epicondyles of humerus

□ Laterally

Brachioradialis

Medially

Pronator teres

□ Roof

Skin, superficial & deep fascia and bicipital aponeurosis

Floor

 Brachialis medially and supinator laterally.

CONTENT OF CUBITAL FOSSA

CLINICAL RELEVANCE

- ☐ The brachial pulse can be felt by palpating immediately medial to the biceps tendon in the cubital fossa.
- ☐ The median cubital vein is located superficially within the roof of the cubital fossa.
- ☐ It connects the basilic and cephalic veins, and can be accessed easily this makes it a common site for venepuncture.

ELBOW JOINT

ARTICULATING SURFACES

- □ The elbow is the joint connecting the upper arm to the forearm.
- It is classed as a hingetype synovial joint.
- □ It consists of two separate articulations:
 - Trochlea and capitulum of the humerus above
 - Trochlear notch of ulna and the head of radius below
- □ The articular surfaces are covered with articular cartilage (hyaline).

CAPSULE

- □ The elbow joint has a capsule enclosing the joint. This in itself is strong and fibrous, strengthening the joint.
- The joint capsule is thickened medially and laterally to form collateral ligaments, which stabilize the flexing and extending motion of the arm.

Anteriorly: attached

- Above To the humerus along the upper margins of the coronoid and radial fossae and to the front of the medial and lateral epicondyles.
- Below To the margin of the coronoid process of the ulna and to the anular ligament, which surrounds the head of the radius.

Posteriorly: attached

- Above To the margins of the olecranon fossa of the humerus.
- Below To the upper margin and sides of the olecranon process of the ulna and to the anular ligament.

BURSAB

- □ A bursa is a membranous sac filled with synovial fluid.
- □ It acts as a cushion to reduce friction between the moving parts of a joint, limiting degenerative damage.
- □ There are many bursae in the elbow, but only a few have clinical importance:
 - Subtendinous between the olecranon and the tendon of the triceps brachii, reducing friction between the two structures during extension and flexion of the arm.
 - Subcutaneous (olecranon) bursa between the olecranon and the overlying connective tissue (implicated in olecranon bursitis).

LIGAMENTS

Lateral (Radial Collateral) Ligament

- ☐ Triangular in shape:
- □ Apex
 - Attached to the lateral epicondyle of humerus
- Base
 - Attached to the upper margin of annular ligament.

Medial (Ulnar Collateral) Ligament

- Anterior strong cord-like band
 - Between medial epicondyle and the coronoid process of ulna
- Posterior weaker fan-like band
 - Between medial epicondyle and the olecranon process of ulna
- Transverse band
 - Passes between the anterior and posterior bands

MOVEMENTS

☐ Flexion

• Is limited by the anterior surfaces of the forearm and arm coming into contact.

Extension

- Is limited by the tension of the anterior ligament and the brachialis muscle.
- ☐ The joint is supplied by branches from the:
 - Median
 - Ulnar
 - Musculocutaneous
 - Radial nerves

CARRYING ANGLE

- □ Angle
 - Between the long axis of the extended forearm and the long axis of the arm
- Opens
 - Laterally
- ☐ About
 - 170 degrees in male and 167 degrees in females
- Disappears
 - When the elbow joint is flexed
- Permits
 - The forearms to clear the hips in swinging movements during walking, and is important when carrying objects

BLOOD SUPPLY

☐ The arterial supply to the elbow joint is from the cubital anastomosis, which includes recurrent and collateral branches from the deep brachial arteries.

☐ The innervation is provided by the median, musculocutaneous and radial nerves anteriorly, and the ulnar nerve posteriorly.

.

CLINICAL RELEVANCE

BURSITIES

■ Subcutaneous bursitis

- Repeated friction and pressure on the bursa can cause it to become inflamed.
- Because this bursa lies relatively superficially, it can also become infected (e.g cut from a fall on the elbow)

■ Subtendinous bursitis

- This is caused by repeated flexion and extension of the forearm, commonly seen in assembly line workers.
- Usually flexion is more painful as more pressure is put on the bursa.

DISLOCATION

- □ An elbow dislocation usually occurs when a young child falls on a hand with the elbow flexed.
- ☐ The distal end of the humerus is driven through the weakest part of the joint capsule, which is the anterior side.
- The ulnar collateral ligament is usually torn and there can also be ulnar nerve involvement
- Most elbow dislocations are posterior, and it is important to note that elbow dislocations are named by the position of the ulna and radius, not the humerus.

QUESTIONS!