Glycogen Metabolism

Color Index:

- Original content
- Important
- Dr's Notes
- Extra info
- Only in girls' slides
- Only in boys' slides

Biochemistry team 438

Objectives:

- Slide No. 3 1. The need to store carbohydrates in muscle
 - 2. The reason for carbohydrates to be stored as glycogen
 - 3. An overview of glycogen synthesis (Glycogenesis)
 - 4. An overview of glycogen breakdown (Glycogenolysis)
 - 5. Key elements in regulation of both Glycogenesis and Glycogenolysis

Location and function of glycogen

location	Liver	Skeletal muscle	
Weight of glycogen	100 g	400 g	
Percentage of the total organ wight	10% of a well-fed (healthy) adult liver	1-2% of the weight of resting muscle	
Function	<u>Major:</u> source for blood glucose (especially during early stages of fasting 10-17 hours) "during late stages gluconeogenesis occurs" <u>Minor:</u> fuel reserve for hepatic cells	fuel reserve (ATP) (during muscular exercise)	
Pathway	Glycogen \rightarrow Glucose 6-P \rightarrow Glucose Glycogen Glycoge	Glycogen → Glucose 6-P → Energy	

why muscles never make glucose?

- 1. the aim of glycogenolysis in muscle cells is to generate energy, so it's better to start from glucose 6-P rather than glucose to avoid losing 1 ATP.
- 2. The hormone Glucose 6-phosphatase which responsible for the formation of glucose from glucose 6-P is only present in the live

Structure of Glycogen

opyright @ 2014 Wolters Fluwer Health | Lippincott Williams & Wilkin

Metabolism of Glycogen in Skeletal Muscle

1- Glycogenesis: (Anabolism) Synthesis of Glycogen from glucose 2- Glycogenolysis : (catabolism) Breakdown of Glycogen to Glucose-6-phosphate "not to glucose"

Glycogenesis Synthesis of Glycogen in skeletal muscles

1) Building blocks

UDP-GLUCOSE (UDP: uridine diphosphate)

★ Source of glucose molecules(energy) , UDP carries the glucose but it is not added to the elongated chain.

(get removed in the elongation step)

3) Elongation

Using the enzyme glycogen synthase for (α 1-4 linkages)

★ Glycogen synthase cannot initiate synthesis but only elongates pre-existing glycogen fragment or glycogen primer + removes the UDP

2) Initiation of synthesis (either by):
A. Elongation of pre-existing glycogen fragment
B. The use of glycogen primer. (Glycogenin)

*option B is like DNA replication we can't start from scratch so we need an enzyme to make a primer (glycogenin in glycogenesis or primase in DNA replication) **EXCEPT in glycogenesis** The primer doesn't get removed

4) Branching: Using **branching enzymes for** (α 1-6 linkages)

Synthesis of Glycogen

1- Glucose 6-P + phosphoglucomutase (Isomerization) \rightarrow Glucose 1-P

-UDP: is an important factor in glycogenesis.

-Before glucose can be stored as glycogen in the liver and muscles, the enzyme UDP-glucose pyrophosphorylase forms a UDP glucose complex

2- Glucose 1-P + UTP (energy) + UDP-glucose pyrophosphorylase (enzyme) \rightarrow UDP-glucose unit.

• Meanwhile the glycogenin is making the primer.

3- Start of elongation by **removing** of UDP and **adding** of glucose to the primer by **glycogen synthase** (enzyme) -Branching speeds up the process of synthesis of glycogen, so: After having at least 8-10 residues:

-and by the (Branching enzyme 4:6 transferase) *the name in a simple term which is the one you should know :

4- **breaking** the (α 1 \rightarrow 4 linkage) of 4-6 residues minimum. 5- transfer the 4-6 residues to a different site and **making** a (α 1 \rightarrow 6 linkage).

* Nonreducing end is when the anomeric carbon is attached to something else.

the most important enzyme of Synthesis of Glycogen

Enzyme	function	Phospho- glucomutase S J Glucose 6- (P)		
phosphogluco-mutase	Isomeration from G6P to G1P	Phospho- glucomutase P Phospho- glucomutase Glucose 1.6-P Glucose 1-P		
UDP-glucose pyrophosphorylase	forms a UDP glucose complex			
glycogenin	making the primer	P		
glycogen synthase	Start of elongation	Figure 11.6 Interconversion of glucose 6- phosphate and glucose 1-phosphate by <i>phosphoglucomutase</i> . P =		
4:6 transferase	Branching enzyme			

Objective 4 : An overview of glycogen breakdown (Glycogenolysis)

Glycogenolysis

Breakdown of Glycogen to Glucose-6-phosphate in skeletal muscle.

1-Shortening of glycogen chain: by glycogen phosphorylase Glycogen phosphorylase contains a coenzyme: pyridoxal phosphate (PLP) They cleave (break) $\alpha(1\rightarrow 4)$ bonds of the glycogen chain \rightarrow Producing Glucose 1-phosphate Note: After it reaches 4 residues the enzyme will stop cleaving G1P is converted to glucose 6-phosphate by mutase enzyme -(phosphoglucomutase)

2-Removal of branches: by debranching enzymes

Cleaving of $\alpha(1\rightarrow 6)$ bonds at the branches of glycogen which releases free glucose

*in few quantities because the majority of the bonds are α (1→4) bonds

3-Fate of glucose 6-phosphate (G-6-P) G-6-P is not converted to free glucose .(it is converted to free glucose only in the liver) It is used as a source of energy for skeletal muscles during muscular exercise (by anaerobic glycolysis starting from G-6-P step

*Pyridoxal phosphate (coenzyme) = vitamine B12

.. continue

1) LIMIT DEXTRIN:

in this point the glycogen phosphorylase can't continue shorting the chine (it remains)

2) debranching enzyme 4:4 transferase: take three glucose molecules by breaking $\alpha(1\rightarrow 4)$ bonds from one end and bind it to the other end

3) debranching enzyme 1:6 glucosidase: it's <u>the same enzyme</u> above except that unbind the $\alpha(1\rightarrow 6)$ bonds

the most important enzyme of Glycogenolysis

Enzyme	function
glycogen phosphorylase	Chain shortening
pyridoxal phosphate	coenzyme of glycogen phosphorylase
mutase enzyme (phosphogluco-mutase)	convertes G1P to G6P
debranching enzymes 4:4 transferase	take three glucose & bind it to another branch
debranching enzymes 1:6 glucosidase	unbind the 1:6 linkage

Regulation of Glycogen Metabolism.

Synthesis & degradation of glycogen are tightly regulated

In Skeletal Muscles:

- Glycogen **degradation** occurs during **active exercise**
- Glycogen synthesis begins when the muscle is at rest

1- Allosteric Regulation

in skeletal muscles (in liver is extra)

mechanism of Allosteric Regulation

	Glycogen degradation	Activation of Ca2+ dependent enzyme	Formation of Ca+2 -calmodulin complex	Increase of calcium	muscle contraction	exercising
Call Com Call Com Call Call Call Call Call Call Call Cal		• e.g. glycogen phosphorylase.	"because of high concentration of Ca+2 intracellularly".	"recall the mechanism of muscle contraction from physiology : the calcium comes out from sarcoplasmic reticulum during muscle contraction".		

Endoplasmic reticulum

Ca²⁺

receptors.

Ca2+ is released from the

endoplasmic reticulum in response to hormones or neurotransmitters binding to cell-surface

2- Hormonal Regulation

1. Muscle contraction

2. Epinephrine release

3. Skeletal muscle: Epinephrine/receptor binding

4. Second messenger: cAMP (Activate protein kinase A)

5. Response: Enzyme phosphorylation

Glycogen storage Diseases (GSD)

- A group of genetic diseases that result from a defect in

an enzyme required for :

a) glycogen synthesis

Result in :

Formation of <u>abnormal</u>glycogen structure

h) alucadan dogradation	Excessive accumulation of normal
	glycogen in a specific tissue.

Glycogen storage Diseases (GSD)

Common in Saudi Arabia

Normal mental development

Lysosomal storage disease				Relatively Benign (Chronic condition) High level of glycogen with normal
Normal blood sugar levels Massive cardiomegaly				structure in muscle High level of glycogen with normal structure in muscle
Normal glycogen structure Infantile form : early death typically from heart failure	Type II (Pompe disease) Deficiency of Lysosomal	Glycogen storage disease	Type V (Mc Ardle syndrome) Deficiency of skeletal muscle glycogen	Temporary weakness and cramping of skeletal muscle after exercise No rise in blood lactate during strenuous (Hard) exercise
Generalized (Mainly : Heart, Liver, Muscle) Excessive glycogen concentration found in abnormal vacuoles in the lysosomes	α(1-4) glucosidase.		phosphorylase ↓ accumulation of glycogen ↓ temporary weakness of muscle	Myoglobinemia & myoglobinuria may be seen Burgundy color of urine (a major key in diagnosis for this disease Skeletal muscle affected, liver enzyme normal (specific)
				Deficiency of the liver isozymes cause type VI (Hers disease with mild fasting hypoglycemia)

the brief about the diseases are useful in question as cases

Review

Q1: The first product formed during glycogenolysis (glycogen degradation at alpha 1,4 glycosidic bonds) is:					
A) Glucose	B) glucose 1 phosphate	cose 1 phosphate C) glucose 6 Phosphate D) glucose 1,6 bisphosphate			
Q2:A 23 years old male came to the clinic complaining from muscle cramps and pain, after examination you found high levels of glycogen with normal structure in muscle, and no rise in blood lactate during strenuous exercise. The patient most likely have :					
A)GSD Type V	B)GSD Type II	C)GSD Type III	D) GSD Type 1		
Q3:The glycogen become glucose 1-phosphate, the enzyme used for this reaction is :					
A)Glycogen synthase	B)Glycogen phosphorylase	C)Phosphoglucomutase	D) glycogenin		
Q4:debranching enzyme					
A)1:6 glucosidase	B)4:4 transferase	C)4:6 transferase	D)A&B		
Q5:what is percentage of of the weight of 100 g of glycogen in a healthy adult liver					
A) 10%	B)100%	C)20%	D)50%		
Q6:Glycogen phosphorylase can be activated by					
A)UDP B)ATP C)ADP D)AMP					

<u>MCQs</u>

Answer key:

Q1:Glycogen phosphorylase enzyme activity inhibited by?

Glucose 6-phosphate, ATP

Q2:What happen to the glycogen if the muscle was at rest?

Glycogen synthesis begin

Q3 name the steps of Synthesis of Glycogen from glucose

building blocks , initiation , elongation , branching

Q4:Name two enzyme that help in glycogenolysis and their function

1-4:4 transferase: debranching enzyme

2- mutase enzyme: convertes G1P to G6P

Wish you all the best !

Charles F Kettering

Contact us:

@Biochemistry438

Biochemistryteam438@gmail.com