



# **MUSCLE**

Color code: 

Doctor notes 

extra 
Important





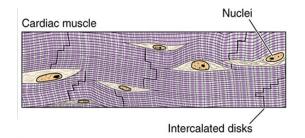
# **Objectives:**

Identify and describe the histological structure of the three types of muscle cells and list the differences between them.

## **Muscular Tissue**

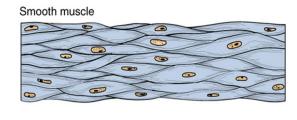
- Made of elongated muscle cells (fibers)
- There are 3 types of muscles (muscle fibers):

muscle fibers


#### Skeletal

striated, voluntary.

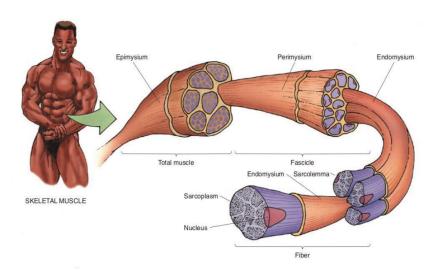
# Skeletal muscle

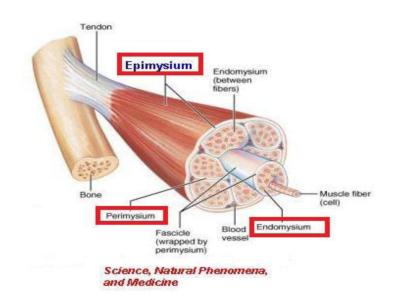

## **Cardiac**

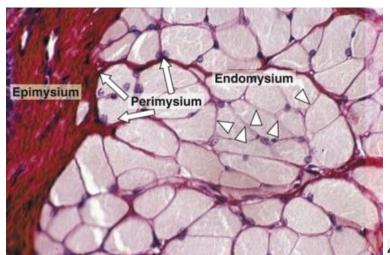
striated, involuntary.



#### **Smooth**


Non-striated, involuntary



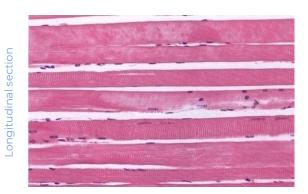


## **Skeletal Muscle**

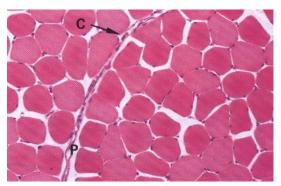
- The whole muscle is covered by a C.T (dense irregular collagenous) covering, the <u>epimysium</u>.
- Consists of parallel skeletal muscle fibers, arranged in bundles, separated by C.T (dense irregular collagenous) septa, the perimysium.
- The individual fibers are separated by C.T (reticular fibers), <u>endomysium</u>.

Epi=out , Peri=around , Endo=inside Sarco=fleshy , Mysium=flesh , Myo=muscle









# Skeletal Muscle Fibers under microscope

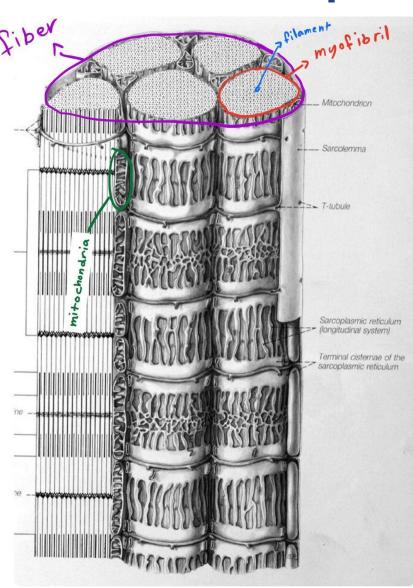

### L.M. Picture:

- Cylindrical in shape.
- Non-branched.
- Covered by a clear cell membrane, the sarcolemma.
- Multinucleated: nuclei are multiple and are peripherally located (close to the sarcolemma).
- Cytoplasm (sarcoplasm) is acidophilic and shows clear transverse striations.

| In normal cell                   | In muscle fiber            |  |
|----------------------------------|----------------------------|--|
| Cell membrane                    | sarcolemma                 |  |
| Cytoplasm                        | sarcoplasm                 |  |
| Smooth endoplasmic reticulum-SER | Sarcoplasmic reticulum -SR |  |
| Mitochondria                     | sarcosomes                 |  |



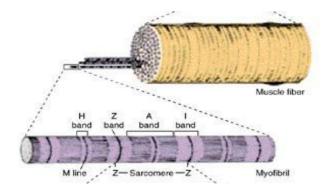


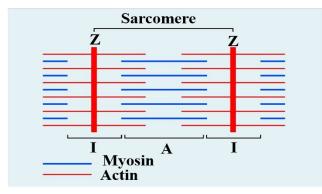



## Skeletal Muscle Fibers under microscope

## **E.M. Picture**:

## Sarcoplasm contains:


- Parallel myofibrils (thousands of filaments)
- Numerous mitochondria, arranged in rows between the myofibrils.
- Well developed smooth endoplasmic reticulum (sarcoplasmic reticulum-SR).
- Myoglobin pigment.
  - \*myoglobin carrying of oxygen molecules to muscle tissues
- Glycogen
  - \*Glycogen provides energy for the muscle

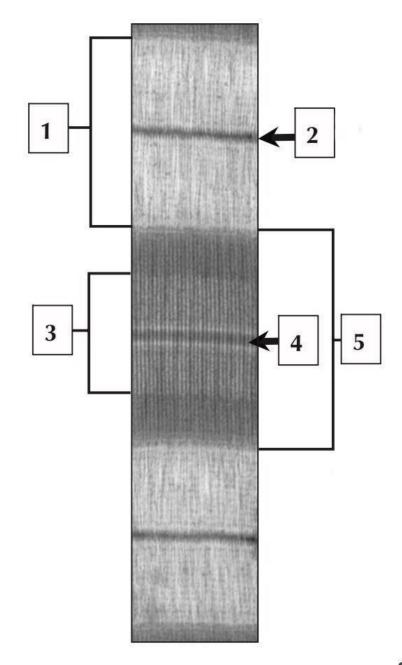



# Skeletal Muscle Fibers (Myofibrils)

#### **E.M. Picture of Myofibrils:**

- Contractile threads (<u>organelles</u>), arranged longitudinally in the sarcoplasm.
- Each myofibril shows alternating dark (A) and light bands (I).
- The A band shows a pale area in the middle (<u>H band</u>) which is divided by a dark line (<u>M line</u>).
- The (I) band shows a dark line in the middle (Z line).
- The sarcomere is the segment between 2 successive Z lines. It is the contractile unit of a myofibril.
- The myofibrils are formed of myofilaments (thick myosin and thin actin).
- The (A) band is formed of myosin myofilaments mainly and the terminal ends of actin myofilaments.
- The (I) band is formed of <u>actin</u> myofilaments.







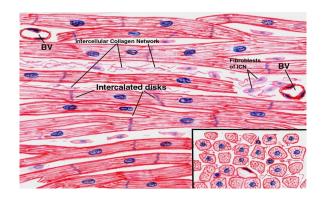

<sup>\*</sup>Good picture in the next slide

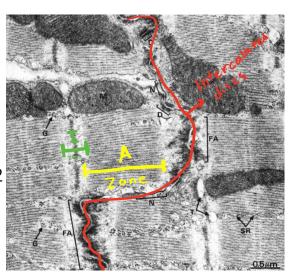
\*The **(A) band** is dark because it contains both myosin and actin. **The (I) band and the (H) zone** are light because they have only one type of myofilaments (actin in I and myosin in H).

- 1. I band
- 2. Z band
- 3. H zone
- 4. M band
- 5. A band



## **Cardiac Muscle**


- Found in the myocardium.
- Striated and involuntary.


#### L.M. Picture of Cardiac Muscle Fibers:

- Cylindrical in shape.
- Intermediate in diameter between skeletal and smooth muscle fibers.
- Branch and anastomose.
- Covered by a thin sarcolemma.
- Mononucleated. Nuclei are oval and central.
- Sarcoplasm is acidophilic and shows non-clear striations (fewer myofibrils).
- Divided into short segments (cells) by the intercalated discs.

#### **E.M. Picture:**

- Few myofibrils.
- Numerous mitochondria.
- Less abundant sarcoplasmic reticulum-SR.
- Glycogen & myoglobin.
- Intercalated discs: are formed of the two cell membranes of 2 successive cardiac muscle cells, connected together by junctional complexes (desmosomes and gap junctions).

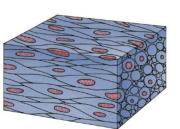


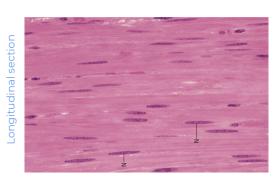


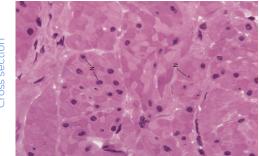
<sup>\*</sup>Gap junctions allow communication and passage between cardiac muscle cells

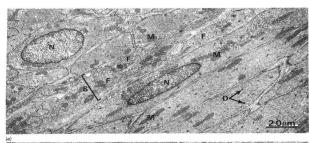
## **Smooth Muscle**

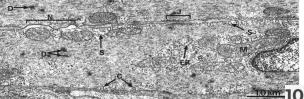
- Present in walls of blood vessels and viscera (internal organ) (digestive, urinary, genital .... etc).
- Non-striated and involuntary.


#### L.M. Picture of Smooth Muscle Fibers:


- Fusiform in shape (spindle-shaped).
- Small diameter and Non-branched.
- Thin sarcolemma.
- Mononucleated. Nuclei are oval & central in position.
- Sarcoplasm is non-striated and acidophilic.


#### E.M. Picture:


- Sarcoplasm contains mitochondria and sarcoplasmic reticulum.
- Myosin & actin filaments are irregularly arranged (that's why no striations could be observed).
- Cells are connected together by gap junctions for cell communication.


"Question: Gap junction can be seen in .....?
A:Smooth muscles and cardiac muscles (involuntary muscles)"











## **REGENERATION OF MUSCLE**

#### (1) Skeletal muscle cells:

Can not divide.

**Limited** regeneration by satellite cells

(stem cells on the muscle cell's surface)

#### (2) Cardiac muscle cells:

No regenerative capacity.

#### (3) Smooth muscle cells:

Can divide.

Regenerate from pericytes.

**active** regenerative response.

## Comparison between different types of muscle fibers

|      | Skeletal           | Cardiac                 | Smooth               |  |
|------|--------------------|-------------------------|----------------------|--|
| Site | Muscle attached to | Myocardium of the heart | Viscera e.g. stomach |  |

Cylindrical

Branched

Not clear

Present

Involuntary

No

Medium-sized

One central nucleus

**Fusiform** 

Smallest

Absent

Absent

Involuntary

active

Non-branched

One central nucleus

12

skeleton

Cylindrical

Non-branched

Numerous and peripheral

Largest

Clear

Absent

Voluntary

Limited

\*This table is very important and useful for OSPE

**Shape** 

Diameter

**Branching** 

**Striations** 

Nuclei

**Action** 

Regeneration

L.M Picture

Intercalated discs

# Quiz P

- 1. Which one of the following muscular tissue is Fusiform in shape
  - a. Skeletal
  - b. Cardiac
  - c. Smooth
  - d. nerves
- 2. What is the name of the dark line in the middle of The (1) band
  - a. A line
  - b. M line
  - c. Z line
  - d. H line
- An entire skeletal muscle is invested by a connective tissue element known as
  - a. Endomysium
  - b. Epimysium
  - c. Perimysium
  - d. Intercalated discs

- 4. Intercalated discs is present in which of the following type of muscle fibers?
  - a. Cardiac muscle
- b. Skeletal muscle
- c. Smooth muscle
- d. All of them
- 5. The **(A) band** is dark because it contains?
  - a. Myosin
  - b. Actin and tubulin
  - c. Actin
  - d. Myosin and actin
- 6. Which one of the following muscle fibers can divide?
- a. Cardiac muscle
- b. Skeletal muscle
- c. Smooth muscle
- d. All of them

## **Team Members**

## **Team Leaders**

Mohammed Alhuqbani Alhanouf Alhaloli Roaa Aljohani Reem Alessa Renad Alkanaan Rawan Alzayed

Abdullah shadid Sarah AlFlaij