Lung function in health and disease

Laila Al-Dokhi

Types of lung function tests include

- Spirometry.
- Gas diffusion.
- Body Plethysmography.
- Inhalation challenge test.
- Exercise stress test.

• Spirometry:

 It is the measurement of the speed and the amount of air that can be exhaled and inhaled.

• Body Plethysmography test:

 The patient is required to sit in an airtight chamber that resembles a small telephone booth. Inside the chamber is an affixed spirometer, which is used to determine the flow properties of the patient.

Cardiopulmonary Stress Testing

 Used for evaluation of dyspnea that is out of proportion to findings on static pulmonary function tests

• Diffusing Capacity of Lung for Carbon Monoxide

- To evaluate the presence of possible parenchymal lung disease
- Pulse Oximetry
 - The principle is measurement of O2 saturation by spectrophotometry

Spirometer

Plethysmography

Spirometry

Spirometry is a method to record volume movement of air into and out of the lungs.

□ Spirometry is a simple most commonly used test to:

- □ Assess the lung performance
- □ Measure the physiological parameters:
 - Lung volumes

 - □Flow rate
- Differentiate between the obstructive and restrictive lung conditions
- Play a critical role in the diagnosis, differentiation and management of respiratory diseases.

Physiological conditions affecting lung functions

- □Age
- Gender
- Height
- Weight
- **Ethnic group**
- **Pregnancy**

- Based on clinical features / abnormal lab tests
- Symptoms:
 - Dsypnea
 - Cough
 - Sputum production
 - Chest pain
- Signs:
 - Cyanosis,
 - Clubbing
 - Chest deformity
 - Diminished chest expansion
 - Hyperinflation
 - Diminished breath sounds
 - Prolongation of expiratory phase & crackles
- Arterial blood gas analysis: Hypoxemia, hypercapnia
- Abnormal chest X Ray.

- To detect respiratory disease in patients presenting with symptoms of breathlessness, and to distinguish respiratory from cardiac disease.
- To diagnose or manage asthma
- To diagnose and differentiate between obstructive and restrictive lung disease.
- To conduct pre-operative risk assessment before anesthesia
- To measure response to treatment of conditions which spirometry detects

- Describe the course of diseases affecting PFTs
 - Neuromuscular diseases: Gillian Barre Syndrome, Myasthenia gravis
 - **Pulmonary diseases**: Obstructive airway diseases, Interstitial lung diseases
 - Adverse reactions: Drugs with known pulmonary toxicity [Pulmonary fibrosis]

- To assess the therapeutic interventions:
 - Bronchodilator therapy
 - -Steroid treatment for asthma
 - Chronic obstructive lung disease
 - -Interstitial lung disease

PRE OPERATIVE INDICATIONS

- To determine the suitability of patients for anesthesia
- To assess the risk for surgical procedures known to affect lung function.

Results classification

- Normal
- Obstructive
- Restrictive
- Combined

Assessment of spirometry

Maintaining accuracy

- The most common reason for inaccurate results:
 - Inadequate or incomplete inhalation.
 - Additional breath taken during the test
 - Lips not sealed around the mouth piece.
 - Slow start to forced exhalation
 - Some exhalation through the nose.
 - Coughing.

Smoking and Spiromtry

Effect of smoking on lung function:

- Non Smoker: In normal healthy non smoker subject after the age of 30 the expected decline in Lung function parameter [FEV1] is 25–30 ml/ year
- -Smoker: The average rate of decline of lung function in smokers as measured by Forced Expiratory Volume in 1 sec [FEV1] is 60-70 ml / year

SMOKERS AND SPIROMETRY

SMOKERS AND SPIROMETRY

DIAGNOSIS OF COPD

