

Globular proteins

Color Index:

- Original content
- Important
- Extra info, Dr's notes
- Only in girls' slides
- Only in boys' slides

Objectives:

Slide No. 3 Oescribe the globular proteins using common examples

- Hemoglobin (a major globular protein)

→ like: hemoglobin and myoglobin.

Slides (4,5) Slide No. 9

Slide No. 11

- Myoglobin
- γ-globulins (immunoglobulins)
- Slides (4,6)
- Know the different types of hemoglobin and difference between normal and abnormal hemoglobin

Study the structure and functions of globular proteins:

Slides (8,10) Understand the diseases associated with globular proteins

Globular proteins

Globin : proteins with functions <u>related</u> to oxygen (transport/storage..etc) **Globulin**: proteins with functions <u>not related</u> to oxygen Objectives: 1) study the structure and functions of globular proteins
 2) Know the different types of hemoglobin and difference between normal and abnormal hemoglobin

Hemoglobin

Functions	Normal level (g/dL)	Types	
Carries O 2 lungs -> tissues	Males: 14-16 Females: 13-15	Normal "Aable to transport O2"	HbA (97%) "most abundant"
			HbA ₂ (2%)
			HbF (1%)
			HbA _{1c}
Carries CO 2 tissues -> lungs		Abnormal "Unable to transport O2"	Carboxy Hb (bound to CO)
			Met Hb
			Sulf Hb

Hemoglobin (HbA) structure

- ★ 4 polypeptide chains
- ★ 2 dimers of ab subunits
 - Held together by non-covalent interactions

★ Contains 4 heme groups and carries 4 molecules of O₂ 4x2 = 8 Oxygen atoms

Types of Hemoglobin

	(HbF) Fetal Hemoglobin	HbA ₂	HbA _{1C}	
characteristics	Major hemoglobin found in the <u>fetus</u> and newborn.	Appears shortly before birth (~8th month)	HbA undergoes non enzymatic glycosylation .	
importance	Transfers O ₂ from maternal to fetal circulation across placenta. * Due to: Higher affinity for O2 than HbA	Constitutes ~2% of total Hb.	HbA _{1C} levels are high in patients with diabetes Mellitus * Due to: Glycosylation (depends on plasma glucose levels)	NH ₂ NH ₂ Hemoglobin A HCO HCOH NH2 groups of the N-terminal valines of β chains A HCO HCOH HCOH HCOH HCOH HCOH HCOH CH ₂ OH Glucose
structure	 2 a chains 2 γ chains. 	 2 a chains 2 δ chains. 		NH NH HCH HCH CO CO HOCH HCOH HCOH HCOH

Abnormal Hemoglobins

 \star Unable to transport O_2 due to abnormal structure:

* ß Glu = Glutamic acid at position <u>6</u> in HbA
** An enzyme convert ferric (Fe⁺³) to ferrous (Fe⁺²),
*** a chaine and a day 2 areas ^{absence} mild areas

Myoglobin in disease

★ Myoglobinuria:

Myoglobin is excreted in urine due to muscle damage (rhabdomyolysis).

May cause acute renal failure

Immunoglobulins

• Defensive proteins produced by the B-cells of the immune system.

Function	structure	Types
Neutralize bacteria and viruses	Y-shaped structure with: ★ 2 heavy ★ 2 light polypeptide chains	 IgM IgA IgG IgE IgD

★ Antigens are small "can't be detected by macrophages" -> immunoglobulins neutralize them -> can be detected by macrophages

Take home message

Amino acid chains fold into shapes that resemble spheres are called globular proteins.

Fibrous proteins are mainly insoluble, while globular proteins are soluble structural proteins.

Hb, Myoglobin, globulines and enzymes are examples of globular proteins.

- Functionally, Hb is for O2 and CO2 transport.
- / HbA, HbA2 and HbF are examples of normal Hb, in which the tetrameric structure is composed of 2a constant subunits with 2 changeable β subunits according to Hb type.

⁷ HbA1C is a HbA which undergoes non-enzymatic glycosylation, depending on plasma glucose levels.

- Carboxy-Hb, Met-Hb and Sulf-Hb are examples of abnormal Hb, in which O2 molecules are not transported due to abnormal Hb structure.
- Disorders of Hb caused by synthesis of structurally abnormal Hb and/or insufficient quantities of normal Hb.
- Sickle cell (HbS) and HbC diseases are caused by a single mutation in β -globin gene.

Take home message

- Glu6 in HbS is replaced by Val, while it is replaced by Lys in HbC.
- Methemoglobinemia is caused by oxidation of Hb, inhibiting O₂ binding leading to chocolate cyanosis.
- Thalassemia is caused by a defect in synthesis of either a- or β-globulin chain, as a result of gene mutation.
- a-Thalassemia causes less severe anemia than β-Thalassemia.
- Myoglobin is a globular heme protein, which stores and supplies O_2 to the heart and muscle only
- Hb is composed of 4 chains (subunits), while Myoglobin is composed of a single chain.
- $^{\prime\prime}$ Myoglobinuria is a specific marker for muscle injury and may cause acute renal failure.
- Immunoglobulins are defensive proteins produced by the B-cells.
- Immunoglobulins consist of 5 types: IgA, IgD, IgE, IgG and IgM

Quiz

MCQs

<u>Q1:</u> The	glycosylated	form of HbA	called:
a) HbA ₂	b) HbC	c) HbA ₁	_{.c} d) HbF

Q2: which of the following is correct concerning glutamic acid in hemoglobin C disease ...

- a) Position 4 in HbA is replaced by lysinec) Position 4 in HbA is replaced by valine
- b) Position 6 in HbA is replaced by valine
- d) Position 6 in HbA is replaced by lysine

Q3: Myoglobin Contains a single polypeptide chain forming a single subunit with?

- a) 2 a-helix structures
- c) 4 a-helix structures

b) 8 a-helix structuresd) 6 a-helix structures

Q4: Sickle cell disease is caused by?

- a) A single mutation in a-globin
- c) Double mutation in a-globin

b) A single mutation in β -globin d) Double mutation in β -globin

Q5: Which one of the following statements concerning the hemoglobins is correct?

- a) HbA is the most abundant hemoglobin in normal adults.
- b) Fetal blood has lower affinity for oxygen because HbF has increased affinity for 2,3-BPG.
- C) The globin chain composition of HbF is a $2\delta^2$.
- **D)** HbA1c differs from HbA by a single, genetically determined amino acid substitution.

Q6: Which type of thalassemia needs blood transfusion?

a) alpha thalassemia b) gamma thalassemia c) beta thalassemia

d) delta thalassemia

SAQs

Q1: The bonds between two dimers are broken in which state?

Q2: what are Immunoglobulins?

Q3: A 67-year-old man presented to the emergency department with a 1-week history of angina and shortness of breath. He complained that his face and extremities had taken on a blue color. His medical history included chronic stable angina treated with isosorbide dinitrate and nitroglycerin. Blood obtained for analysis was brown. What'is the most likely diagnosis?

*	MCQs Answer key:
1) C 3) B 5) A	2) D 4) B 6) C
k	5AQs Answer key:
1) 2)	Oxygenated state Defensive proteins produced by the B-cells of the immune systemNeutralize bacteria and virusesY-shaped structure with 2 heavy and 2 light polypeptide chains.
3)	Methemoglobinemia

Girls team :

- Ajeed Al-rashoud
- \star 🛛 Alwateen Albalawi
- Elaf Almusahel
- Lina Alosaimi
- Nouf Alhumaidhi
- Noura Almazrou
- Noura Alturki
- Nouran Arnous
- \star 🛛 Reem Algarni
- ★ Shahd Alsalamh
- Taif Alotaibi

Team leaders:

Boys team :

- Abdullah Altuwaijri
- ★ Alkaseem binobaid
- Fares Aldokhayel
- Naif Alsolais
- ★ Saad Dammas

 \star You must be the change you Wish to see in the World. كن أنت التغيير الذي تريد أن تراه في العالم

YM

Mohannad Alqarni

