Gas exchange and gas transfer

Objectives

1. Define partial pressure of a gas
2. Understand that the pressure exerted by each gas in a mixture of gases is independent of the pressure exerted by the other gases (Dalton's Law)
3. Understand that gases in a liquid diffuse from higher partial pressure to lower partial pressure (Henry's Law)
4. Describe the factors that determine the concentration of a gas in a liquid.
5. Describe the components of the alveolar-capillary membrane (i.e., what does a molecule of gas pass through).
6. Knew the various factors determining gas transfer: -

Surface area, thickness, partial pressure difference, and diffusion coefficient of gas
7. State the partial pressures of oxygen and carbon dioxide in the atmosphere, alveolar gas, at the end of the pulmonary capillary, in systemic capillaries, and at the beginning of a pulmonary capillary.

Gas exchange through the respiratory membrane

(a)

I After the alveoli are ventilated with fresh air, the
i next step in the respiratory process is diffusion of
I oxygen from the alveoli into the pulmonary blood !
i and diffusion of carbon dioxide in the opposite i
i direction, out of the blood.

Composition of alveolar air and its relation to atmospheric air:

The dry atmospheric air enters the respiratory passage is humidified before it reaches the alveoli.

Alveolar air is partially replaced by atmospheric air with each breath.

0 , is constantly absorbed from the alveolar air.

CO, constantly diffuses from the pulmonary blood into the alveoli.

Respiratory Unit and Layers of Respiratory Membrane

- Respiratory unit (respiratory lobule):
a unit consisting of a respiratory bronchiole, alveolar ducts, atria, and alveoli.
- The total number of alveoli in the human body is around 300 million, with each having an average diameter of 0.2 mm .
- The extremely thin walls of these alveoli form part of the Respiratory Membrane, whose thickness inversely affects the rate of gas diffusion.

The following figures show the layers of the respiratory membrane:

Respiratory Membrane Layers

Fluid-surfactant layer

Alveolar epithelium

Epithelial basement membrane

Interstitial space

Capillary basement membrane

Capillary endothelium

Partial pressure of gases (in a mixture)

- In respiratory physiology, there is a mixture of gases mainly of $\mathrm{O}_{2}, \mathrm{~N}_{2}$, and CO_{2}.
- The pressure of gas is caused by the constant kinetic movement of gas molecules against the surface.
\star Explanation:

$$
\text { Pressure }=\frac{\text { Force }}{\text { Area }}
$$ Pressure is caused by multiple impacts of moving molecules against a surface. Therefore, the pressure of a gas acting on the surfaces of the respiratory passages and alveoli is proportional to the summated force of impact of all the molecules of that gas striking the surface at any given instant

The rate of diffusion of each of these gases is directly proportional with the partial pressure of the gas. * Explanation:

$$
\begin{array}{r}
P V=n R T \quad P=\frac{\mathrm{nRT}}{\mathrm{~V}} \quad \mathrm{P}=\mathrm{CRT} \\
\qquad=\frac{n}{V} \\
\text { Ideal gas law } \\
\begin{aligned}
\\
\text { concentration formula }
\end{aligned}
\end{array}
$$

so,		
and sincepressure concentiation pressure	a	concentration
	a	rate of diffusion

Pressure of gases dissolved in water and tissue:

The pressure of gases dissolved | in fluid is similar to their pressure in the gaseous phase and they exert their own | individual partial pressure.

Explanation of Partial pressure of gases (in a mixture)

The concept of partial pressure can be explained as follows:
Consider air, which has an approximate composition of 79% nitrogen and 21% oxygen. The total pressure of this mixture at sea level averages 760 mmHg . It is clear from the preceding description of the molecular basis of pressure that each gas contributes to the total pressure in direct proportion to its concentration.
\rightarrow Therefore, 79% of the 760 mmHg is caused by nitrogen $(600 \mathrm{mmHg})$ and 21% by $\mathrm{O}_{2}(160 \mathrm{~mm} \mathrm{Hg})$.
\rightarrow Thus, the "partial pressure" of nitrogen in the mixture is 600 mmHg , and the "partial pressure" of O_{2} is 160 mmHg ; the total pressure is 760 mm Hg , the sum of the individual partial pressures.
\rightarrow The partial pressures of individual gases in a mixture are designated by the $\mathrm{PO}_{2}, \mathrm{PCO}_{2}, \mathrm{PN}_{2}$, and so forth.

Diffusion of Gases Between the Gas Phase in Alveoli and Blood

The partial pressure of each gas in the alveolar respiratory gas mixture tends to force molecules of that gas into solution in the blood of the alveolar capillaries. Conversely, the molecules of the same gas that are already dissolved in the blood are bouncing randomly in the fluid of the blood, and some of these bouncing molecules escape back into the alveoli. The rate at which they escape is directly proportional to their partial pressure in the blood.

But in which direction will net diffusion of the gas occur?

The answer is that net diffusion is determined by the difference between the two partial pressures. If the partial pressure is greater in the gas phase in the alveoli, as is normally true for oxygen, then more molecules will diffuse into the blood than in the other direction. Alternatively, if the partial pressure of the gas is greater in the dissolved state in the blood, which is normally true for CO_{2}, then net diffusion will occur toward the gas phase in the alveoli.
laws of gases

Factors that affect the rate of gas diffusion through the respiratory membrane

Female's slides only

D a

d x

- The diffusion rate of the specific gas:

Diffusion coefficient for the transfer of each gas through the respiratory membrane depends on:
$\square \quad$ Directly on its solubility (S) through the membrane CO_{2} solubility $>\mathrm{O}_{2}$
$\square \quad$ Inversely on the square root of its molecular weight (MW).

- The Diffusion Coefficient = S/ JMW directly proportional
$\square \quad$ Inversely proportional to The thickness of the respiratory membrane $\mathrm{SO} \rightarrow \mathrm{CO}_{2}$ diffuses 20 times as rapidly as O_{2}.
If we have respiratory failure which gas will be affected first? O_{2}

\star	D: diffusion rate
\star	P: Partial pressure differences
\star	A: Surface area for gas exchange
\star	S Solubility of gas
\star	d: Diffusion distance
\star	MW: Molecular weight

Factors that affect the rate of gas diffusion through the respiratory membrane

Partial pressure differences:

The pressure difference between the two sides of the membrane (between the alveoli and the blood).

* When the pressure of the gas in the alveoli is greater than the pressure of the gas in the blood as for O_{2} \rightarrow net diffusion from the alveoli into the blood occurs.

When the pressure of the gas in the blood is greater than the pressure in the alveoli as for CO_{2}
$\rightarrow \quad$ net diffusion from the blood into the alveoli occurs.

Surface area of the membrane:

range $\left(50-100 \mathrm{~m}^{2}\right)$ average $\left(70 \mathrm{~m}^{2}\right)$

* Removal of an entire lung decreases the surface area to half normal.
* In emphysema with dissolution of the alveolar wall decreases S.A. to 5 -folds because of loss of the alveolar walls.

The thickness of the respiratory membrane (Diffusion distance):

* increasing in the thickness of the respiratory membrane e.g. edema
\rightarrow decreases the rate of diffusion.
Thickness will decrease during exercise, therefore the rate of diffusion increases.

Partial pressures of respiratory gases as they enter and leave the lungs (at sea level)

Pemale's slides only

Oxygen concentration in the atmosphere is 21%
\rightarrow So partial O_{2} pressure $\left(\mathrm{PO}_{2}\right)$ in atmosphere $=760 \mathrm{mmHg}(1$ ATM) $\times \mathbf{2 1 \%}=160 \mathrm{mmHg}$.
\rightarrow This mixes with "old" air already present in alveolus to arrive at PO_{2} of 104 mmHg in alveoli.

Carbon dioxide concentration in the atmosphere is 0.04%
\rightarrow So PCO_{2} in atmosphere $=760 \mathrm{mmHg} \times 0.04 \%=0.3 \mathrm{mmHg}$
\rightarrow This mixes with high CO_{2} levels from residual volume in the alveoli to arrive at PCO_{2} of 40 mmHg in the alveoli.
 $P_{\left(\mathrm{CO}_{2}\right)}$ in the various portions of normal expired air.

PO_{2} and PCO_{2} Levels and Diffusion Routes

- Cells use oxygen in metabolic activities all the time, which means that the PO_{2} inside cells and its surrounding interstitial fluid would decrease.
- This causes a partial pressure difference with the blood in surrounding tissue capillaries, leading to net diffusion of O_{2} into the interstitial fluid.
- This deoxygenated blood circulates back into the heart and into the lungs, where the PO_{2} of alveolar air causes O_{2} to diffuse into the pulmonary capillaries.
- The same mechanism happens with CO_{2} but in the opposite direction, because cells produce CO_{2} instead of consuming it like it does with O_{2}

	PO_{2}	PCO_{2}
Alveoli	104 mmHg	40 mmHg
Pulmonary capillaries -	$\downarrow 40 \mathrm{mmHg}$	45 mmHg
Tissue capillaries*	95 mmHg	40 mmHg
Interstitial fluid	$\downarrow 40 \mathrm{mmHg}$	45 mmHg
Cells	$\downarrow 23 \mathrm{mmHg}$	46 mmHg

(arrows indicate diffusion)

PO_{2} and PCO_{2} Levels and Diffusion Routes

Figure 35-1.

Copyright ©2006 by The McGraw-Hill Companies, Inc. All rights reserved.

Summary of PO_{2} and PCO_{2} values in air, lungs, blood, and tissues, graphed to emphasize the fact that both O_{2} and CO_{2} diffuse "downhill" along gradients of decreasing partial pressure. (Redrawn and reproduced, with permission, from Kinney JM: Transport of carbon dioxide in blood. Anesthesiology 1960;21:615.)

Gas concentrations in the alveoli

Oxygen
Carbon dioxide

[^0]ventilatory rate: is the total volume of new air entering the alveoli and other adjacent gas exchange areas

1- A human experiment is being performed in which forearm blood flow is being measured under a variety of conditions. The forearm is infused with a vasodilator, resulting in an increase in blood flow. Which of the following occurs?
A. Tissue interstitial partial pressure of oxygen $\left(\mathrm{Po}_{2}\right)$ will increase
B. Tissue interstitial partial pressure of carbon dioxide $\left(\mathrm{PcO}_{2}\right)$ will increase
C. Tissue pH will decrease

2-If alveolar surface area is decreased 50% and pulmonary edema leads to a doubling of diffusion distance, how does diffusion of O_{2} compare with normal?
A. 25% increase
B. 25% decrease
C. 50% decrease
D. 75% decrease

3- A person with normal lungs at sea level $(760 \mathrm{mmHg})$ is breathing $50 \% \mathrm{O}_{2}$. What is the approximate alveolar Po_{2} ?
A. 100
B. 159
C. 306
D. 330

4- The forces governing the diffusion of a gas through a biological membrane include the pressure difference across the membrane ($\Delta \mathrm{P}$), the cross-sectional area of the membrane (A), the solubility of the gas (S), the distance of diffusion (d), and the molecular weight of the gas (MW). Which changes increase the diffusion of a gas through a biological membrane?
$\triangle P \quad A \quad S \quad$ d $\quad M W$
A. Increase Increase Increase Increase Increase
B. Increase Decrease Increase Increase Increase
C. Increase Increase Increase Decrease Decrease
D. Increase Decrease Decrease Increase Increase

SAQ

1- what are the Factors that affect the rate of gas diffusion?

2- Why does arterial O_{2} pressure decrease to 95 ?

Answers

1- $D a \frac{\Delta P \times A x S}{d x \sqrt{M W}}$

2- A small portion of blood (2\%)
supplies deep lung tissues then joins
with arterial blood, thus decreasing the O_{2} concentration.

Key answers:

TEAM MEMBERS

Done by:

-	Arwa Al Emam
-	Deema almaziad
	May Babaeer
-	Nood alali
\circ	Noura Almazrou
-	Noura Alturki
-	Rema Almutawa
-	Renad Almutawa
-	Tarfah Alkaltham

o Abdulrahman Alhawas
o Aued Alanazi

- Alwaleed Alsaleh
- Badr Almuhanna
- Ibrahim Alshaqrawi
o Mohaned Makkawi
o Mohammed Alhamad
o Omar Aldosari
- Omar Alghadir

[^0]: * recall from the previous lecture:

