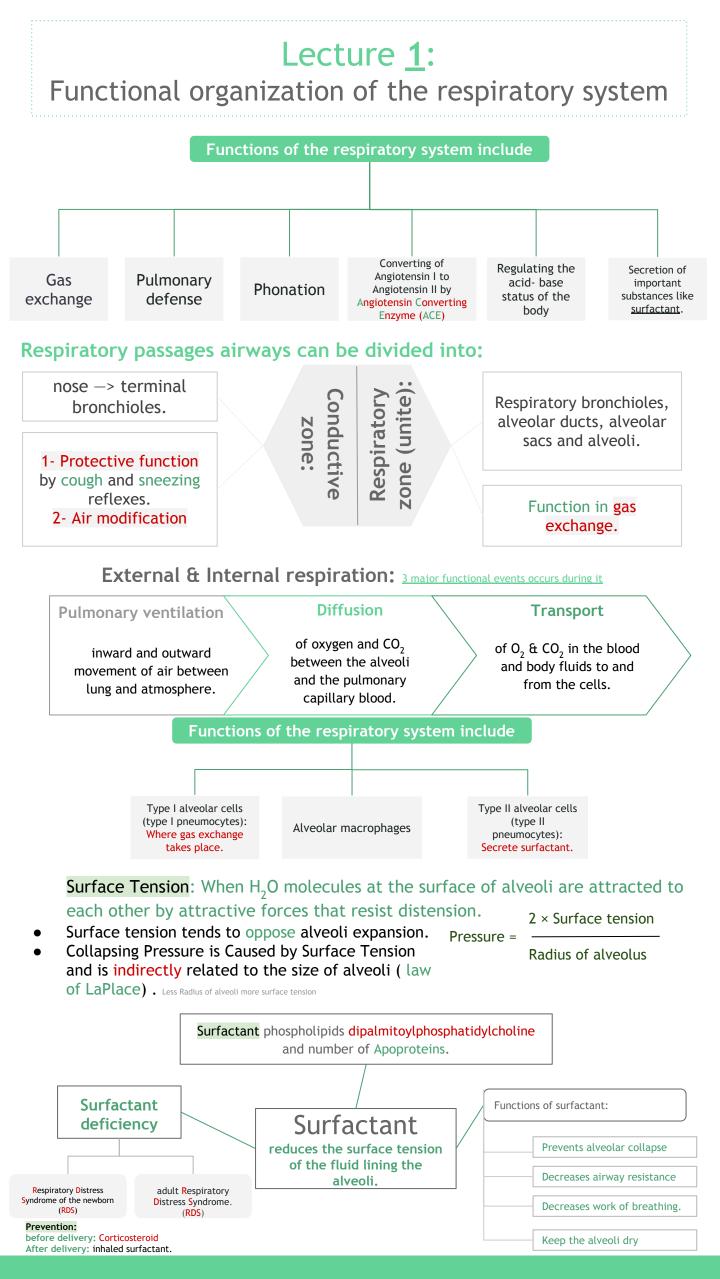


PHYSIOLOGY Summary File

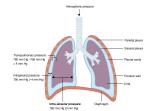
★ Tarfah Alkaltham


Special thanks to - Razan Alrabah

Click to contact us

Click for editing file

Lecture 2: Mechanics of breathing


Respiration is happened by expanded and contracted lungs

Inspiratory muscles Expiratory muscles During resting inspiration, the muscles are 1- diaphragm 2- external intercostals. Resting expiration is a passive process that depends on the recoil tendency of the lung During forced inspiration the Accessory muscles of inspiration participate forced expiration is active and need contraction of the 1- Abdominal muscles . 2- internal intercostal muscles.

by elevation and depression of the ribs to increase and decrease the anteroposterior diameter of the chest cavity

Lung volume

Alveolar pressure

0.50 -

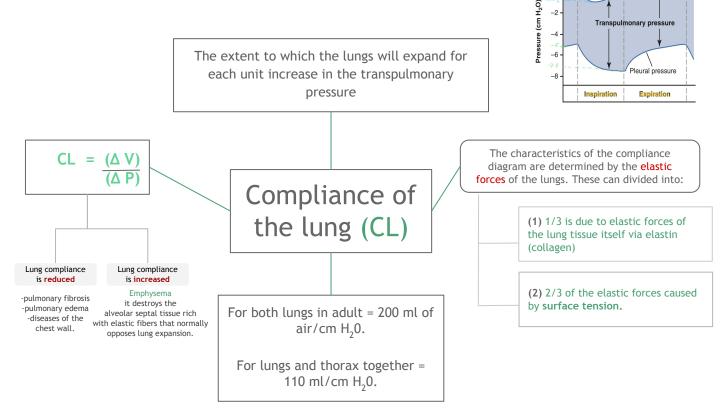
ehange (

/olume

0.25

+2 -

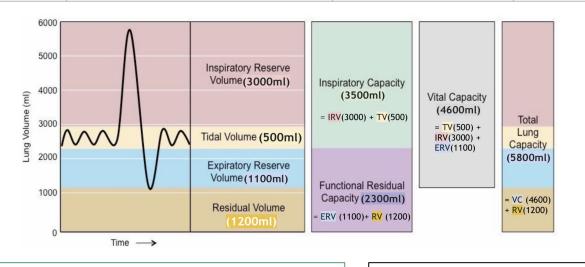
0


Pressure changes in the lungs during breathing

Pressure	During rest	During inspiration	During expiration
Intra-alveolar pressure	(0 mmHg) 760 mmHg	(-1 mmHg) 759 mmHg	(+1 mmHg) 761 mmHg
-Intrapleural pressure	(-5 mmHg) 755 mmHg	(-7.5 mmHg) 752.5 mmHg	(just for your information) -6.5 mmHg according to Linda
Transpulmonary pressure TPp = Palv-Ppl	TPp= 0- (-5)= +5 mmHg	TPp= -1 - (-7.5)= +6.5 mmHg	(just for your information) TPp= +1 -(-6.5)= +7.5 mmHg

Why negative??:

1- The lung's elastic tissue causes it to recoil, while that of the chest wall causes it to expand. Because of these two opposing forces the pressure in the pleural cavity becomes negative.


2-The pleural space is a potential space,(empty) due to continuous suction of fluids by lymphatic vessels.

Lecture <u>3</u>: Respiratory Ventilation.

Volume	Definition	value
<mark>Tidal volume</mark> TV	is the volume of air inspired or expired with each normal breath.	500ml
Inspiratory reserve volume IRV	is the extra volume "Maximal" of air that can be inspired over and beyond the normal tidal volume	3000ml
Expiratory reserve volume ERV	is the extra amount "Maximal" of air that can be expired by forceful expiration after the end of a normal tidal expiration	1100ml
Residual volume RV	is the volume of air that still remain in the lungs after the most forceful expiration	1200ml

capacity	Definition	Equation	Volume
Functional residual capacity FRC	is the volume of air remaining in the lungs after normal expiration.	ERV(1100)+ RV(1200)	2300ml
Inspiratory capacity IC	is the volume of air inspired by a maximal inspiratory effort after normal expiration.	IRV(3000) + TV(500)	3500ml
Forced Vital Capacity FVC	is the volume of air expired by a maximal expiratory effort after filling the lung to maximal inspiration then expiring to maximum extent.	TV(500) + IRV(3000) +ERV(1100)	4600ml
Total lung capacity TLC	is the maximum volume of air that can be accommodated in the lungs.	it is the sum of all pulmonary volumes	5800ml

the volume of air expelled during the **first second** of a forced expulsion after a maximum inspiration. Value=3680ml

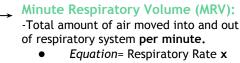
FEV1/FVC ratio

• This ratio differentiates between obstructive and restrictive lung diseases, Normally it is about 80%.

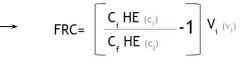
Respiratory Zone - Start from the respiratory bronchioles down to the alveolar sacs.

-Gas exchange takes place.

-350 ml/min.

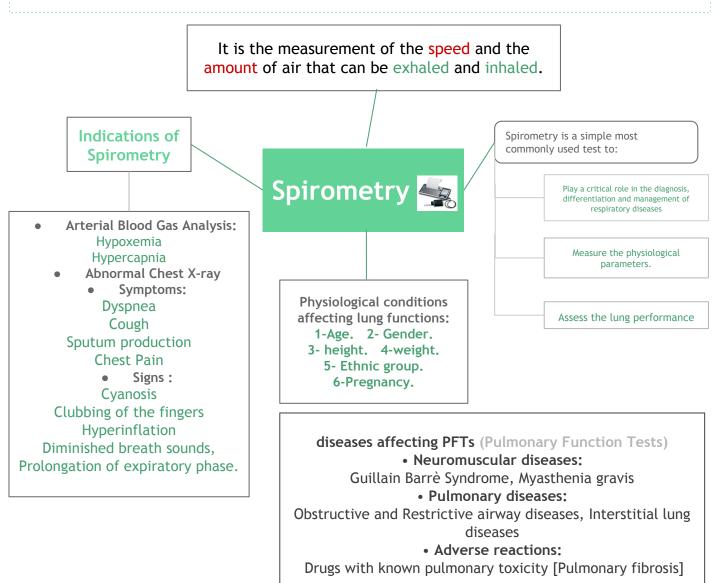

Anatomical Dead Space

- Start from air-conducting system down to the terminal bronchioles.


-No gas exchange.

-150 ml.

Another important laws:



tidal volume = 6000 ml/min.

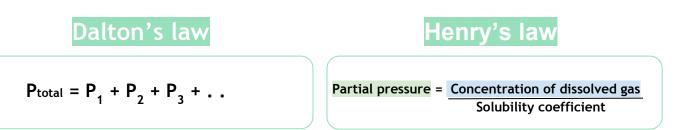
- Alveolar ventilation per minute VA:
 is the total volume of new air entering the alveoli and other adjacent gas exchange areas each minute.
 - Equation= Respiratory rate X (Vt - Vd)=12 X (500 - 150) = 4200ml

Lecture 4: lung function in health and disease

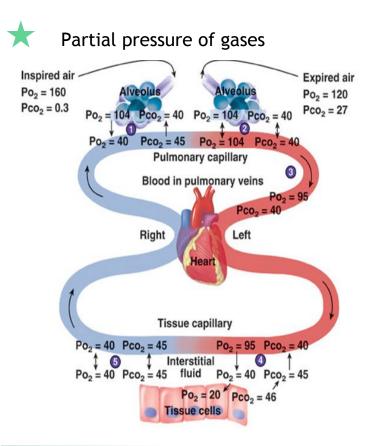
PFTs in Obstructive and restrictive pulmonary diseases:

	Obstructive	Restrictive	Obstruction
FVC (Forced vital capacity)	Normal or Decreased	Decrease a lot	Time
FEV1 (Forced Expiratory volume in one second)	Decrease a lot	Normal or Decreased	Restriction
FEV1/FVC ratio	Decreased	Normal or increased	Time
TLC (Total lung capacity)	Increased	Decreased	Volume

Effect of smoking on lung function



Lecture 5: Gas exchange and gas transfer


Factors that affect the rate of gas diffusion through the respiratory membrane

Diffusion rate $\alpha \frac{\Delta P \times A \times S}{d \times MW}$

solubility of gas is directly proportional to the partial pressure

	PO2	PCO ₂
atmospheric air	160 mmHg	0.3 mmHg
Alveoli	104 mmHg	40 mmHg
arterial pressure	95 mmHg	40 mmHg
venous pressure	40 mmHg	45 mmHg
Interstitial fluid	40 mmHg	45 mmHg
Cells	23 mmHg	46 mmHg
expired air	120 mmHg	27 mmHg

	ventilatory rate	of O2 consumption by tissues	Co2 excretion from the blood
At resting condition	4.2 L/min.	250 ml/min	200ml/min
During exercise	must increase 4 times	1000 ml/min (x4 normal volume)	

T	a an ant of O	
Ira	nsport of O ₂	
\rightarrow Oxygen can combine loosely and rev	ersibly with hemoglobin.	
Oxygen-carrying capacity of blood determined by	y:	
 PO₂ of environment. PO₂ is high (pulmonary capillaries) → O₂ binds to hemoglobin → Greater Hb saturation PO₂ is low (tissue capillaries) → Hb releases O₂ → Lower Hb saturation 		
2- Affinity between hemoglobin and O ₂ Forms of Oxygen transported in blood:		
1- 97% Binds to Hemoglobin • Hb + 40 ₂ \rightarrow Hb(0 ₂) 4"oxyhaemoglobin" • Normal Hb in young adults = 16 gm/dl Each gram binds to 1.34 ml of 0 ₂ \rightarrow 16 x 1.34 = 21.44 ml of 0 ₂ /dl • venous blood \rightarrow Hb carry 14.4 ml of 0 ₂ (Normal State) \rightarrow Hb carry 4.4 ml of 0 ₂ (Strenuous exercise)		
 2- 3% Dissolved In plasma Normal arterial PO₂ = 95 mmHg → 0.29 ml Tissue capillaries PO₂ = 40 mmHg → 0.12 ml Oxygen transported = 0.17 ml 		
Trar	nsport of CO ₂	
O ₂ -carrying capacity of blood determined by:	Forms of CO_2 transported in blood	
CO ₂ -carrying capacity of blood determined by: 1- PCO 2 • Higher In Tissues Than In Capillary	Forms of CO_2 transported in blood (4 ml CO_2 is carried to the lung) 1- 70% Bicarbonate form • tissues \rightarrow Right shift \rightarrow Cl- shift	

0.3 ml of CO₂ is transported 3- 23% carbamino hemoglobin form

oxygen-haemoglobin dissociation curve

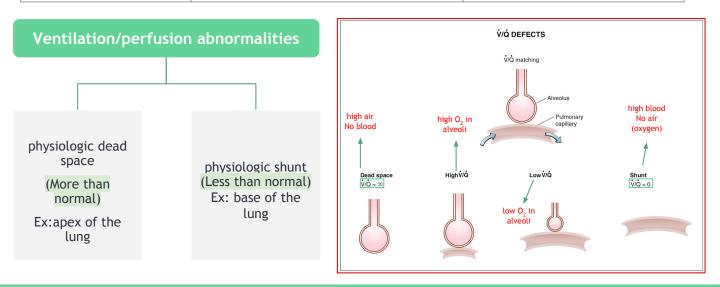
	Right shift	Normal Function	left shift
Affinity	Lower affinity for O_2	Normal Affinity	Higher affinity for O_2
Meaning	Release <u>More</u> O_2 \rightarrow oxygen is <u>unloading</u> to the tissues from Hb	Releasing 5 mL of O ₂	Release <u>less</u> O_2 \rightarrow <u>loading</u> or attachment of oxygen to Hb
pH (H⁺ conc)	↓ pH (↑H⁺ conc)	Decreased carbon dioxide (P _{CO2} 20 mm Hg) or H ⁺ (pH 7.6)	↑ pH (↓H⁺ conc)
Temperature	↑(↑Exercise)		Ļ
(2,3-DPG)	Ŷ	40 40 40 40 40 40 40 40 40 40	Ļ
PCO ₂	(Bohr effect)	Increased carbon dioxide (P _{CO2} 80 mm Hg) or H ⁺ (pH 7.2)	Ļ
P50	↑		\downarrow
Fetal haemoglobin		20 40 60 80 100 ⁻ P _{O2} (mm Hg)	

Lecture <u>7</u>: hypoxia and cyanosis

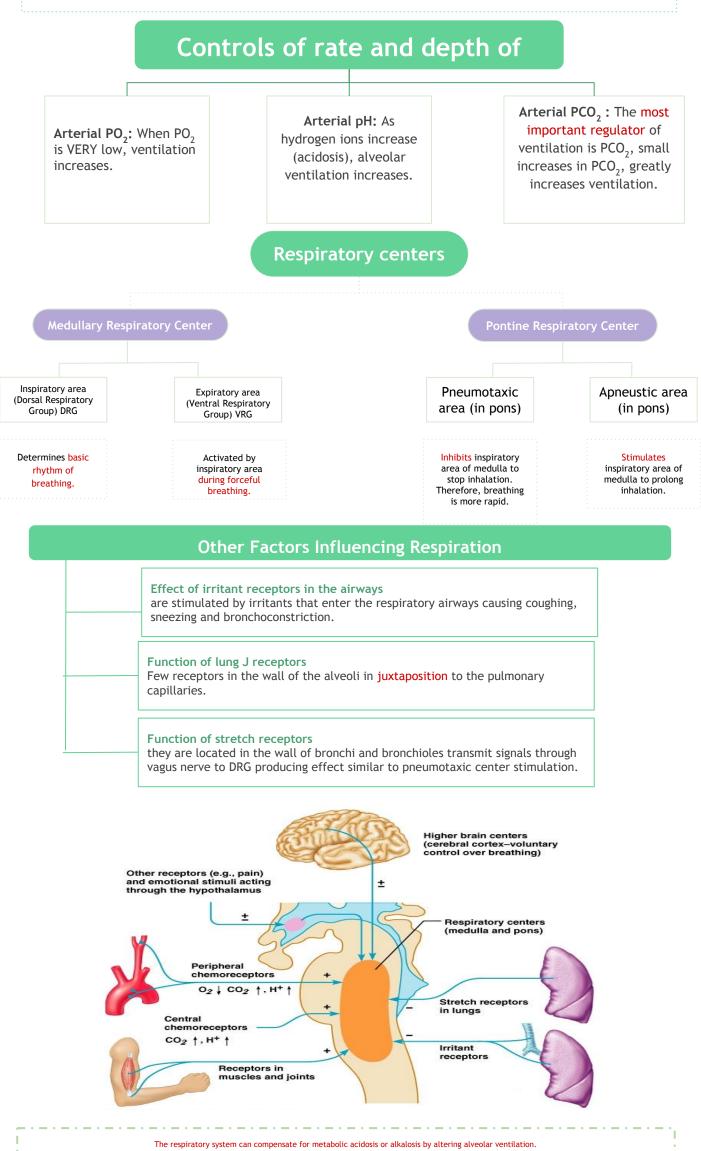
Hypercapnia Excess of CO_2 in body, PCO_2 increases above **52 mmHg**, it decreases the PH.

Types of Hypoxia

Нурох	ic or arterial hypoxia	Anemic hypoxia	
Reduced arterial PC) ₂ .	Reduction in the oxygen carrying capacity • The PO2 & %Hb-O2 is normal	
Causes: •Alveolar hypoventilation, Diffusion abnormalitie, Right to left shunt, Ventilation-perfusion imbalance.		Causes: 1- Anemia 2-Abnormal Hb e.g methemoglobin, carboxyhemoglobin	
Stagnant hypoxia:		Histotoxic hypoxia	
Reduced blood flow circulation,leading t	through the tissues, due to slow to hypoxia.	This is inability of the tissues to <u>use</u> oxygen due to inhibition of the oxidative enzyme activity	
Causes: 1-General slowing 2-Local slowing		 e.g cyanide poisoning causing blockage of the cytochrome oxidase activity 	
Effect of Hypoxia	According to the <u>degree</u> of hypoxia Clinical features: depend on how fast and how severely partial pressure of O ₂ is decreased		
Treatment	oxygen therapy. (Not effective for the histotoxic hypoxia)		

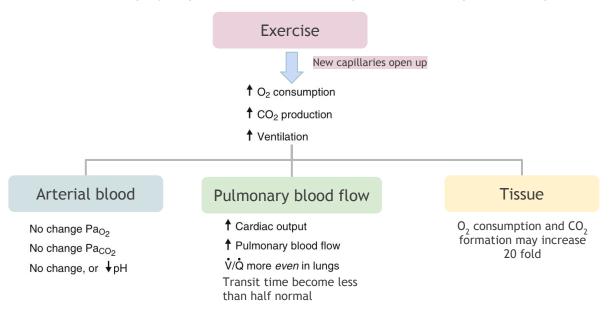

Cyanosis

Blue discoloration due to more than 5 g/dl of <u>reduced</u> (deoxygenated) hemoglobin in blood, patients with anemia almost never develop cyanosis, but they can develop in polycythemia.


Causes of Cyanosis	Inadequate oxygenation of blood in the lungs	presence of aerated shunt between vessels	other: Moderate cold & Diminished blood flow to tissues
Types of Cyanosis	Central General impairment of circulation. Can occur in hypoxic hypoxia	Perip Decrease in blood flow in one b Ex: arterial obstruction	heral body part.

Ventilation perfusion ratio

alveolar ventilation at rest	The pulmonary blood flow	V/ <mark>Q</mark> ratio	
4.2 L/min	5L/min	4.2/5 = 0.84	

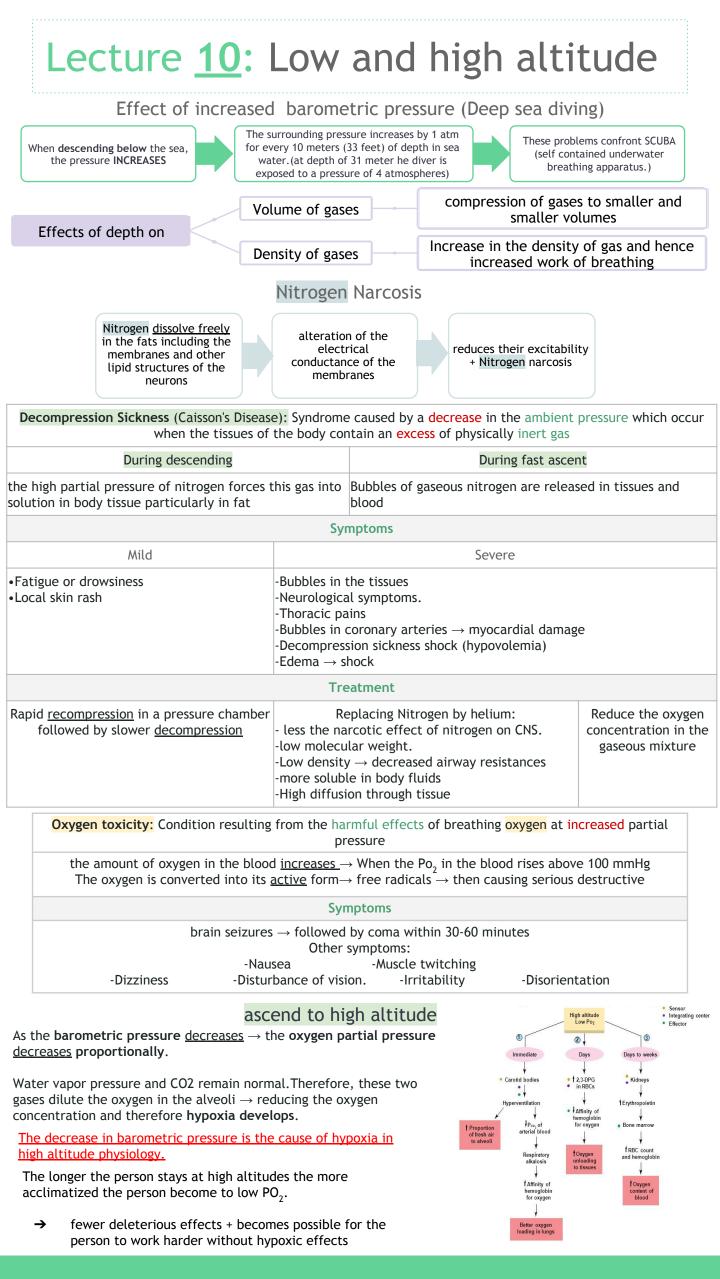

Lecture <u>8</u>: Control Of Breathing

Lecture <u>9</u>: effect of exercise on respiratory system

What causes intense ventilation during exercise?

- 1. Neural signals from the motor areas of the brain (motor cortex) to the respiratory center.
- 2. The joint proprioceptors
- **3.** Body temperature (hypothalamus).
- 4. Possibility that the neurogenic factor for control of ventilation during exercise is a learned response (cerebral cortex)
- 5. chemical factors play important role in final adjustment of respiration required

the blood is almost completely saturated with oxygen when it leaves the pulmonary capillaries despite of the changes happen during exercise **! How ?**


1- The diffusing capacity for oxygen increases almost three fold during exercise, **because** of increase surface area (opening of new capillaries) + increase alveolar ventilation + V/Q ratio more even

2- At rest the blood normally stays in the lung capillaries about three times as long as necessary

Diffusing capacity : Is the volume of gas that diffuses through the membrane each minute for a pressure difference of 1 mmHg.

	O ₂ diffusing capacity	CO ₂ diffusing capacity
During rest	21 ml/min/mmHg	400ml/min/mmHg
During exercise	65 ml/min/mmHg	1300ml/min/mmHg

Trait of male :	0 ₂ consumption
Normal, at rest	250 ml/min
Untrained , during exercise	3600 ml/min
Athletically trained , during exercise	4000 ml/min
marathon runner , during exercise	5100 ml/min

