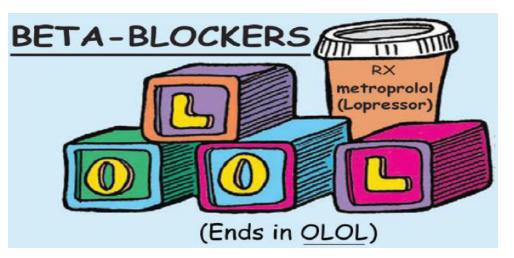
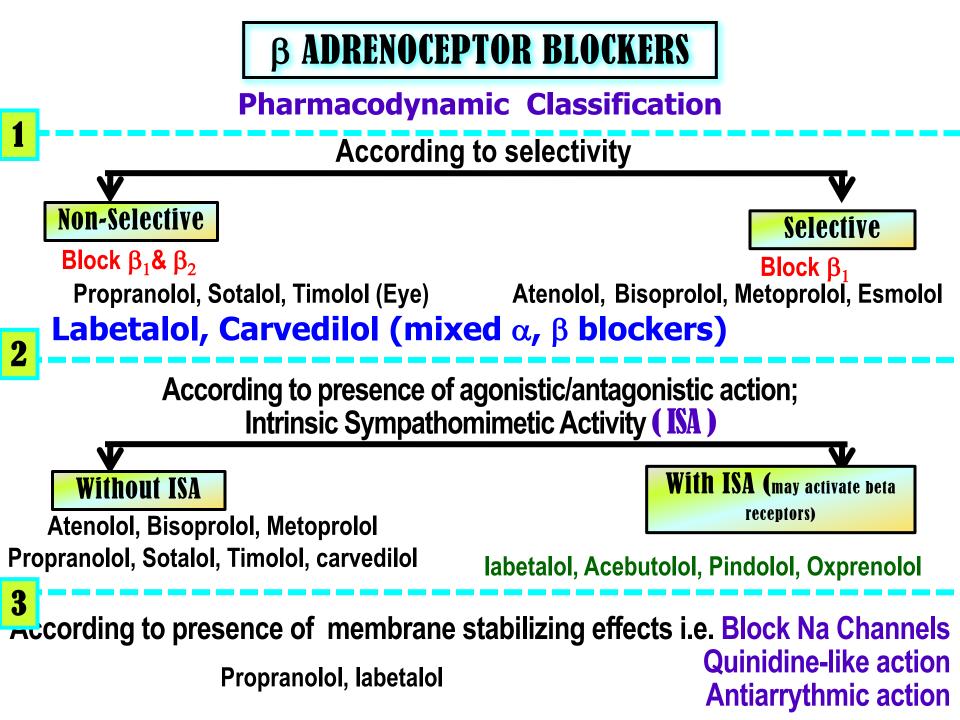

β- Adrenoceptors blockers

Prof. Hanan Hagar Pharmacology Unit College of Medicine


By the end of this lecture, the student should be able to


- Outline the mechanisms of action of B-blockers
- Classify B-receptor blockers into selective & non- selective
- Know the pharmacokinetic aspects & pharmacodynamic effects of B- adrenergic blockers.
- Identify the specific uses of non selective and selective B-adrenergic blockers.

Classification of β - Adrenoceptors Blockers

Selective β1 antagonists Acebutolol, Atenolol Bisoprolol, Betaxolol Celiprolol Esmolol, Metoprolol Non selective β- Antagonists Blocks β1& β2 receptors Oxprenolol Propranolol, Pindolol Sotalol, Timolol (POST)

- Mixed α, β receptors blockers
- > Carvedilol
- > Labetalol

β ADRENOCEPTOR BLOCKERS

Pharmacokinetic Classification

According to their lipid solubility



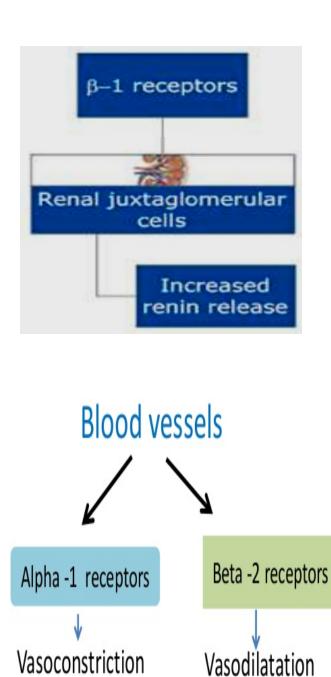
	Lipophilic	Hydrophilic
Oral absorption	Complete	Irregular
Liver metabolism	Yes	No
t _{1/2}	Short	Long
CNS side effects	High	low
	Metoprolol Propranolol, Timolol Labetalol , Carvedilol	Atenolol, Bisoprolol, Esmolol Sotalol

CNS depressant effects i.e. Sedative effect + Anxiety

Lipophylic

β ADRENOCEPTOR BLOCKERS

Pharmacokinetis of B-blockers:


- Most of them are lipid soluble
- Lipid soluble β–blockers
 - -well absorbed orally.
 - are rapidly distributed, cross readily BBB
 - Have CNS depressant actions
 - Metoprolol, propranolol, timolol, labetalol, carvedilol
- Most of them have half-life from 3-10 hrs except Esmolol (10 min. given intravenously).
- Most of them metabolized in liver & excreted in urine.

B Receptor location

Receptor	Location
β1	Heart, JG cells in kidney
β2	Bronchi, blood vessels, liver, skeletal muscle
β3	Adipose tissue

Pharmacological effects of β -agonists

TISSUE	RECEPTOR TYPE	ACTION
HeartSinus and AVConduction pathwayMyocardial fibrils	β1 β1 β1	↑Automaticity ↑Conduction velocity, automaticity ↑Contractility, automaticity
Vascular smooth muscle	β2	Vasodilation
Bronchial smooth muscle	β2	Bronchodilation
Kidneys	β1	↑Renin release
Liver	β2	↑Glycogenolysis and gluconeogenesis
Adipose tissue	β3	↑Lipolysis
Skeletal muscle	β2	Tremor

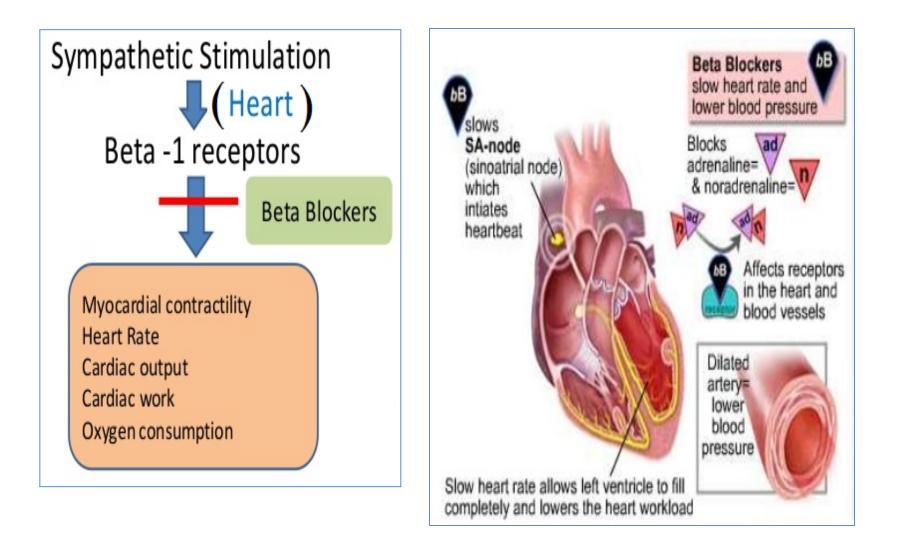
Pharmacological effects of β -agonists

- β_1 (Heart):
- > Increase heart Rate \rightarrow Positive chronotropic effect.
- > Increase in contractility \rightarrow Positive inotropic action.
- \succ Increase in conduction velocity \rightarrow Positive dromotropic.
- $\beta_{2:}$ relaxation of smooth muscles
- β₂ : Hyperglycemia
- β_2 : \uparrow Release of glucagon from pancreas
- $\beta_2 \alpha_1$: Glycogenolysis & gluconeogenesis in liver
- **B3** : [↑] Lipolysis by adipose tissue
- **Pre-synaptic β2 Receptors:** ↑ release of NE (**Positive feed back mechanism**).

<u>Pharmacological actions of β–Adrenergic blockers:</u> CVS:

Negative inotropic, chronotropic, dromotropic + + CO

Antianginal effects (ischemic heart disease):


- \downarrow Heart rate (bradycardia)
- ↓ force of contraction → ↓ cardiac work
- \downarrow Oxygen consumption due to bradycardia

Anti-arrhythmic effects:

+excitability, + automaticity & + conductivity (due to its sympathetic blocking).

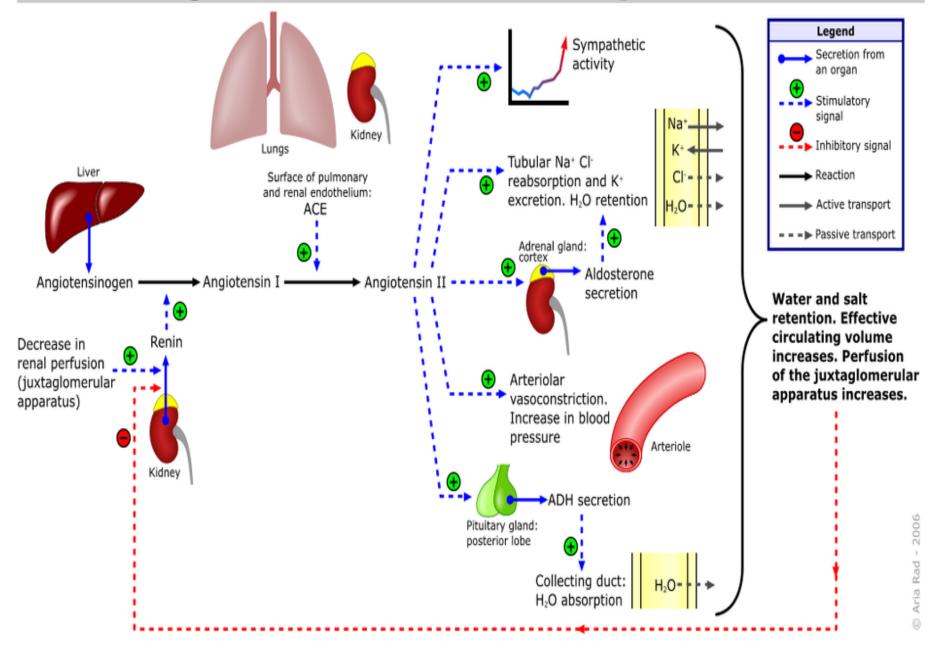
All β–Adrenergic blockers mask hypoglycemic manifestations in diabetic patients **→** COMA

Pharmacological effects of β -blockers on CVS

<u>Pharmacological actions of β -Adrenergic blockers:</u>

Blood vessels β₂

• peripheral resistance (PR) by blocking vasodilatory effect β_2


↓ blood flow to organs → cold extremities
 contraindicated in peripheral diseases like Reynaud's disease

Blood pressure

Antihypertensive → ↓ BP in hypertensive patients due to effects on:

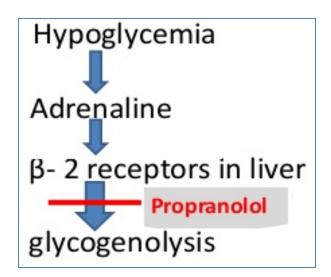
- Inhibiting heart properties + + cardiac output (β₁)
- 4 β Blockade + renin secretion + Ang II & aldosterone secretion (β_1).
- Presynaptic inhibition of NE release from adrenergic nerves

Renin-angiotensin-aldosterone system

Pharmacological actions of β -Adrenergic blockers:

- **Respiratory tract:** β_2
- Bronchoconstriction
- contraindicated in asthmatic patients.

Eye:


- \downarrow aqueous humor production from ciliary body
- ↓ Reduce intraocular pressure (IOP)
- e.g. timolol as eye drops

Intestine: ↑ Intestinal motility

Pharmacological actions of β -Adrenergic blockers:

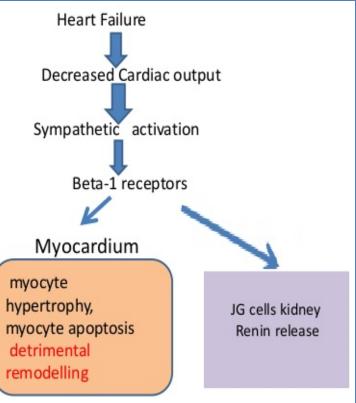
Metabolic effects:

- Hypoglycemia
 - ↓ glycogenolysis in liver
 - \downarrow glucagon secretion in pancreas
- Ipolysis in adipocytes
- Na⁺ retention 2^{ndry} to +BP + +renal perfusion

<u>Clinical Uses of β -receptor blockers</u>

- Cardiovascular disorders
 - Hypertension
 - Arrhythmia
 - Angina pectoris
 - Myocardial infarction
 - Congestive heart failure
- Pheochromocytoma
- Chronic glaucoma
- Hyperthyroidism (thyrotoxicosis)
- Migraine headache prophylaxis
- Anxiety

<u>Clinical Uses of β -receptor blockers</u>


- **In Hypertension:**
- Propranolol, atenolol, bisoprolol Labetalol: α, β blockers in hypertensive pregnant & hypertensive crisis.
- In cardiac arrhythmias:
- In supraventricular & ventricular arrhythmias. Bisoprolol and carvedilol are preferred

Angina pectoris:

- \downarrow heart rate, \downarrow cardiac work & oxygen demand.
- \downarrow the frequency of angina episodes.

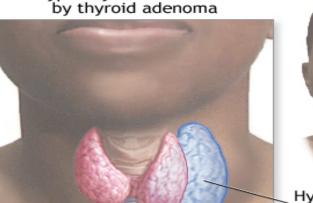
Clinical Uses of β -receptor blockers

- **Congestive heart failure:**
- e.g. carvedilol:
- **antioxidant** and non selective α,B blocker
- ↓ myocardial remodeling & ↓risk of sudden death.

<u>Clinical Uses of β -receptor blockers</u>

- **Myocardial infarction:**
- Have cardio-protective effect
- \bullet infarct size
- \bullet morbidity & mortality \bullet
- Anti-arrhythmic action.
- \bullet incidence of sudden death.

In glaucoma


- e.g. Timolol as eye drops
- Decreases secretion of aqueous humor by ciliary body.

Decreases Intraocular pressure (IOP)

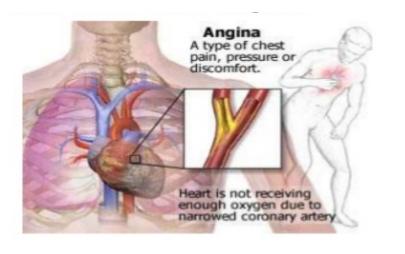
In Hyperthyroidism

- Protect the heart against sympathetic over stimulation
- Controls symptoms;
 - Tachycardia
 - Tremors
 - Sweating

In anxiety (Social and performance type) e.g. Propranolol

Controls symptoms due to sympathetic system stimulation as tachycardia, tremors, sweating.

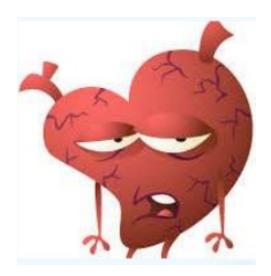
Migraine: Prophylactic +reduce episodes of chronic migraine + catecholamine-induced vasodilatation in the brain vasculature e.g. propranolol




Pheochromocytoma used with α-blockers (never alone)

- α-blockers lower the elevated blood pressure.
- β-blockers protect the heart from NE.

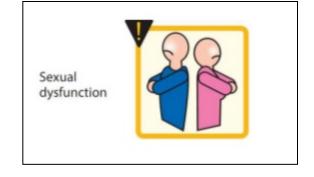
Uses of B-blockers



Adverse Effects of β - Adrenoceptors blockers

Due to blockade of β1- receptor:

Bradycardia, hypotension, heart failure

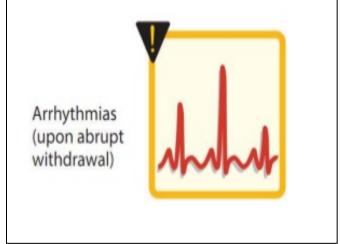

Adverse Effects of β - Adrenoceptors blockers

- Due to blockade of β 2- receptor: only with non-selective β blockers
- Hypoglycemia
- ▲ TG → hypertriglyceridemia
- Bronchoconstriction (# Asthma, emphysema).
- cold extremities & intermittent claudication (due to vasoconstriction).
- Erectile dysfunction & impotence
- Coronary spasm → in variant angina patients

Bronchoconstriction

Adverse Effects of β - Adrenoceptors blockers

4 Depression, and hallucinations.


- Gastrointestinal disturbances.
- Sodium retention
- **4** Fatigue

Precautions

- Sudden stoppage will give rise to a withdrawal syndrome:
- ✓ Rebound angina, arrhythmia, myocardial infarction &
- ✓ Hypertension
- WHY ? \rightarrow <u>Up-regulation of β -receptors.</u>

✓ To prevent withdrawal manifestations → drug withdrawn gradually.

Contraindications of β - Adrenoceptors blockers

- Heart Block (beta blockers can precipitate heart block).
- \circ **Bronchial Asthma (safer with cardio-selective** β**-blockers)**.
- Peripheral vascular disease (safer with cardio-selective βblockers).
- Diabetic patients → Masking of hypoglycemia / GIVEN
 CAUSIOUSLY
- Hypotension
- $\circ\,$ Alone in pheochromocytoma (must be given with an α -blockers).

- Non-Selective Competitive Blocker of $\beta_1 \& \beta_2$
- Membrane stabilizing action/ quinidine-like /local anesthetic effect
- sedative actions /No ISA
- **Pharmacokinetics**

Lipophilic

- completely absorbed
- 70% destroyed during 1<u>st</u> pass hepatic metabolism
- 90-95% protein bound
- cross BBB and excreted in urine.
- Can be given p.o or parenteral

Pharmacological actions

- Membrane Stabilization: Block Na channels

 depressant to myocardium
 has local anesthetic effect (anti-arrhythmic effects).
- β-blocking Effect: →(anti-arrhythmic effects).
- CNS Effect: Has sedative action + tremors & anxiety + used to protect against social anxiety performance anxiety.

PROPRANOLOL

Cardiovascular system Heart by blocking β_1 :

- Inhibit heart properties + + cardiac output
- Has anti-ischemic action + cardiac work + 02
 consumption
- Has anti-arrhythmic effects

 excitability, automaticity & conductivity + by membrane stabilizing activity.

Blood Pressure (by blocking $\beta_1 \& \beta_2$):

Has antihypertensive action by

- Inhibiting heart properties + + cardiac output
- B blockade : + renin & RAAS system
- Presynaptic inhibition of NE release from adrenergic nerves
- Inhibiting sympathetic outflow in CNS

PROPRANOLOL

Actions

Mainly by β_2 blockade

- Blood Vessels: Vasoconstriction
 Use blood flow specially to muscles, other organs except brain
 Cold extremities
- Bronchi: Bronchospasm specially in susceptible patients
- Intestine:
 Intestinal motility
- Metabolism:

 - In pancreas: **U** Glucagon secretion
 - In adipocytes:
 Lipolysis
 - In skeletal muscles: +glycolysis
- On peripheral & central nervous systems:
 - Has local anesthetic effect + tremors & + anxiety

PROPRANOLOL

INDICATIONS

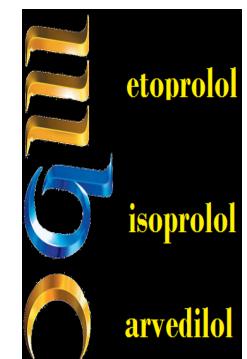
- **4** Hypertension
- **4** Arrhythmias
- **4** Angina
- **4** Myocardial infarction
- Migraine [Prophylaxis]
- **4** Pheochromocytoma; used with α -blockers (never alone)
- **4** Chronic glaucoma
- **4** Tremors
- Anxiety: (specially social & performance type)
- **4** Hyperthyroidism

Labetalol

✓ Blocks $\alpha_1 \& \beta$

- ✓ Rapid acting, non-selective with ISA
- ✓ Has local anesthetic effect, Given p.o and i.v
- ✓ Does not alter serum lipids or blood glucose
- ✓ Produce peripheral vasodilation
- ✓ Decrease blood pressure

Uses


- ✓ Severe hypertension in pheochromocytoma
- ✓ Hypertensive crisis (e.g. during abrupt withdrawal of clonidine).
- Used in pregnancy-induced hypertension
 ADR: Orthostatic hypotension, sedation & dizziness

Blocks $\alpha_1 \& \beta$

- ✓ Non-selective with no ISA & no local anesthetic effect.
- ✓ Has ANTIOXIDANT action
- ✓ Used effectively in → CONGESTIVE HEART FAILURE → reverses its pathophysiological changes.

Adverse effects:

Orthostatic hypotension, Edema

Summary of B-blockers uses

- **Hypertension** Atenolol, Bisoprolol, Metoprolol, Propranolol
- o cardiac arrhythmia Esmolol (ultra-short acting), Atenolol, Propranolol
- o **Congestive heart failure** Carvedilol, Bisoprolol, Metoprolol
- Myocardial infarction Atenolol, Metoprolol, Propranolol
- o Glaucoma Timolol
- Migraine prophylaxis Propranolol
- Relief of anxiety (social & performance) Propranolol
- Thyrotoxicosis Propranolol

β -receptor blockers

Propranolol	Non selective B _{1,} β ₂ blocker	Migraine prophylaxis Hyperthyroidism (thyrotoxicosis) Relieve anxiety (social performance)
Timolol	$B_{1,}\beta_2$ blocker	Glaucoma
Atenolol Bisoprolol Metoprolol	B ₁ blocker	Myocardial infarction Hypertension
Esmolol	B ₁ blocker Ultra short acting	Cardiac arrhythmia
Carvedilol	a, B blocker	Congestive heart failure
Labetalol	a, B blocker	Hypertension in pregnancy Hypertensive emergency

To increase your knowledge

Intermittent claudication

Peripheral artery disease most commonly affects the <u>legs</u>, but other arteries may also be involved. The classic symptom is leg pain when walking which resolves with rest.

Risk factors:

Diabetes, hypercholesterolemia, hypertension

