







# What Is Shock?

- Φ A normal cardiac pump, circulatory system and/or volume are important to maintain blood flow to tissues.
- O Shock is profound hemodyamic and metabolic disturbance characterized by failure of the circulatory system to deliver oxygen & to maintain adequate perfusion of vital organs relative to metabolic requirement.
- σ It is defined as Circulatory Shock.



### Types Of Circulatory Shock



# Types Of Circulatory Shock



### Shock Syndromes

(1) Hypovolemic Shock Blood VOLUME problem

(2) Cardiogenic Shock
Blood PUMP problem

Obstructive shock.

Blood FLOW problem

Distributive Shock
(4) Blood VESSEL problem

#### Hypovolemic Shock

#### Low CO due to:



- Inadequate blood/plasma volume (loss of 15-25%,/ 1-2 L).
- > Reduced venous return (preload).



### Causes of Hypovolemic Shock

- O Internal fluid loss:
  - Increased capillary membrane permeability
  - Decreased plasma colloidal osmotic pressure
- O External fluid loss:
  - Hemorrhage (commonest)
  - Plasma loss as in extensive burns
  - Severe vomiting, excess diarrhea, excess sweating, or massive diuresis

# Clinical Presentation of Hypovolemic Shock

- or ↓ MAP sensed by Baroreceptors.
- Tachypnea (rapid respiration)... Compensation for hypoxia sensed by Chemoreceptors.
- o Rapid, weak, & thready pulse... (? 140/min).
- ω Hypotension... (?  $\le 85/40$  mmHg)

- Ocold, pale skin... due to hypoperfusion.
- o Intense thirst.
- Oliguria (low urine output)/
  Anuria (no urine output): dark
  & concentrated urine) due to
  poor tissue perfusion
- Mental status changes
- Restlessness... due to hypoperfusion.
- **Φ** Blood test: Lactic acidosis.

#### Cardiogenic Shock

#### Low CO due to:

- MAP = CO
- Failure of myocardial pump, despite adequate ventricular filling pressure.
- Is associated with loss of > 40% of LV myocardial function.
- Mortality rate is high, 60-90%.
- Causes:
- Decreased Contractility Myocardial Infarction.. (Most common), myocarditis, cardiomypothy, congestive heart failure, post resuscitation syndrome following cardiac arrest.
- Sustained Arrhythmia Heart block, ventricular tachycardia, supraventricular tachycardia, atrial fibrillation etc.)



- Mechanical Dysfunction Acute valvular dysfunction, e.g. papillary muscle rupture post-MI, severe aortic stenosis, rupture of ventricular aneurysms etc.
- Cardiotoxicity (B blocker and calcium channel blocker overdose)

#### Clinical Presentation of Cardiogenic Shock

- Similar signs & symptoms to that of hypovolemic shock.
- May not show typical tachycardic response: if patient on Beta blockers, in heart block, or nodal tissue ischemia
- ➤ Mean arterial pressure below 70 mmHg compromises coronary perfusion
- Congestion of lungs & viscera: (Chest XR)
  - Interstitial pulmonary oedema.
  - Alveolar edema.
  - Cardiomegaly.

#### Obstructive Shock

CO is reduced by obstruction to the flow of the blood, but the heart pumping capacity is well.

- Obstruction of venous return:
  - e.g. Vena Cava Syndrome (usually neoplasms).
- Compression of the heart:

e.g. hemorrhagic pericarditis → cardiac tamponade

- Obstruction of the outflow of the heart:
  - Aortic dissection.
  - Massive pulmonary embolism.
  - Pneumothorax.







Aortic dissection



#### Clinical Presentation

- > Jugular venous distension
- Distant heart sound in cardiac tamponade.
- Tracheal deviation & decreased or absent unilateral breath sounds in tension pneumothorax
- Chest pain, dyspnea and hemoptysis in pulmonary embolism



#### Distributive Shock/ Vasogenic (low resistance shock)

#### **CO** is Normal or Elevated



- Shock is due to inadequate perfusion of tissues through maldistribution of blood flow.
- Intravascular volume is maldistributed because of alterations in blood vessels, i.e. loss of vascular resistance.
- Cardiac pump & blood volume are normal but blood is not reaching the tissues (there is peripheral vasodilation due to loss of vessel tone).

# Etiologies of Distributive Shock



### Septic Shock

#### Causes:

Bacterial endotoxins release inflammatory mediators that trigger endothelial injury, increase capillary permeability

& peripheral vasodilatation (hyperdynamic response)

E.g:-

- Peritonitis.
- Generalized bodily infection.
- Generalized gangrenous infection.
- ❖ Infection spreading into the blood from the kidney or urinary tract.



### Clinical Manifestations

- Patient is flushed & warm due to his hyperdynamic state
- Increased heart rate
- Tachypnea
- Massive vasodilation

#### Anaphylactic Shock

- A type of distributive shock that results from massive & generalized systemic allergic reaction to an antigen (IgE- mediated hypersensitivity).
- Basophils and mast cells releases
  histamine which triggers peripheral
  vasodilation & ↑ capillary
  permeability.
- It can lead to low output distributive shock.
- This hypersensitive reaction is LIFE THREATENING



Allergy to insect parts and molds



Allergy to foods and additives

## Clinical Presentation

- Circulatory collapse
  - Tachycardia, vasodilation, hypotension
- Cutaneous manifestations
  - Urticaria, erythema, pruritis, angioedema
- Respiratory compromise
  - Stridor, wheezing, bronchorrhea, respiratory distress

### Psychogenic SHOCK

- Simple fainting (syncope.)
- Caused by stress, pain, fright or emotional crisis.
- ↓ HR.
- Sudden temporary, generalized dilation of blood vessels
- Brain becomes hypoperfused.
  - → Loss of consciousness.

### Neurogenic (Spinal) Shock

- Loss or drop in vasomotor tone (generalized peripheral vasodilation especially in the veins).

Damage to spinal cord

Spinal cord

- Neurogenic is the rarest form of shock! <u>Caused by</u>:-
  - Spinal cord injury (above C7)
  - Spinal anesthesia.
  - Deep general anesthesia.
  - · Brain damage.
  - Prolonged brain ischemia that cause total inactivation of the vasomotor neurons.

### Pathophysiology of shock

♦ Impaired tissue perfusion occurs when an imbalance develops between cellular oxygen supply and demand.

Cells switch Membrane **Electrolytes** Cell Damage of Na+/K+ from Lactic acid & fluids becomes **function** mitochondria pump is aerobic to production seep in & ceases & more & cell death impaired anaerobic out of cell permeable swells (apoptosis) metabolism

### Metabolic Changes & Cellular Response To Shock

#### 1. Reduce capillary perfusion:

- →Spasm of pre/post capillary sphincters.
- → Hypoxic tissue damage, (oxidative stress).
- →Anaerobic metabolism (anaerobic glycolysis).
- →Lactic acid production.
- →Metabolic acidosis (intracellular acidosis).
- $\rightarrow$ Failure of Na+/K+ pump ( **1**Na+& Cl<sup>-</sup>).
- →Lysosomes, nuclear membranes & mitochondrial breakdown.

### Metabolic Changes & Cellular Response To Shock...Cont.

#### 2. After 3 - 5 hrs of shock:

- →Precapillary sphincters dilate, venules are still constricted.
- →Blood stagnation in capillaries.
- → Hypoxia continue & fluid leaves to extra vascular compartment.
- →Further reduction in circulating blood volume.

#### 3. Granulocytes accumulation at injured vessels:

- $\rightarrow$ Free radicals release.
- →Further tissue damage.

### Metabolic Changes & Cellular Response To Shock...Cont.

- 4. Damage in GIT mucosa → allows bacteria into circulation.
- 6. Myocardial ischemia → depressed contractility + myocardial damage

  more shock & acidosis.
- 7. Respiratory distress syndrome occurs, due to damage of capillary endothelial cells & alveolar epithelial cells, with release of cytokines.
- 8. Multiple organ failure & death.

### Stages of shock

#### Reversible stage (Nonprogressive, Compensated Shock)

- In which compensatory mechanism (neurohormonal activation) & appropriate treatment help restoration of blood pressure & blood loss.
- Defense mechanisms are successful in maintaining perfusion.

#### Progressive

- Defense mechanisms begin to fall.
- Multi-organ failure.

#### Irreversible stage ( Decompensated Shock)

- There is complete failure of compensatory mechanisms.
- Series of positive feedback mechanisms take place leading to further deterioration & tissue hypoxia.
- This stage is reached and patient may die, when blood loss is excess and not immediately replaced and proper treatment is delayed.

#### Compensatory Mechanisms

- 1-  $\downarrow$  BP stimulates baroreceptors reflex  $\rightarrow$  sympathetic stimulation.
- 2 Acidosis stimulates chemoreceptors reflex → sympathetic stimulation.
- 3- Sympathetic stimulation →vasoconstriction & tachycardia. This increases TPR and hence ABP.
- 4- Tachypnea: Caused by activation of chemoreceptor reflex and sympathetic overactivity.
- 5- Release of vasoconstrictor factors/hormones as
  - Catecholamines
  - Vasopressin →vasoconstriction, increase BP & acts on renal tubules to restore fluid volume & thirst stimulation.
  - Glucocorticoids to ↑ blood sugar to meet increased metabolic needs.
  - Renin-angiotensin-aldosterone  $\rightarrow$  angiotension II  $\rightarrow$  potent vasoconstriction & releases aldosterone adrenal cortex  $\rightarrow$  Na<sup>+</sup> & water retention ( $\uparrow$  intervascular volume).

#### Compensatory Mechanisms...Cont.

6- Increased movement of interstitial fluid into capillaries (capillary fluid shift) as a result of decreased capillary hydrostatic pressure while oncotic pressure is constant→↑blood volume & BP.



- 7- Increased 2,3 DPG concentration in RBCs: important to help Hb deliver more  $O_2$  to the tissues (shift  $O_2$  dissociation curve to the right)
- 8- Restoration of circulatory plasma volume, plasma proteins and RBCs mass.

# Summary of Compensatory Mechanisms

Initial physiological insults leading to shock state



Restoration of tissue perfusion

### Causes of irreversible stage of Shock

#### 1. Cardiac depression.

The drop in APB leads to drop in coronary flow

- $\rightarrow$  (-) heart  $\rightarrow$  drop CO
- 2. Vasomotor failure.

Results from depression of vasomotor center → the heart becomes depressed and CO drops.

- 3. Release of toxins & endotoxin: → Cardiac depression.
- 4. Blockage of Very Small Vessels—"Sludged Blood."
- 5. Increased capillary permeability due to capillary hypoxia.
- **6. Generalized cellular deterioration:**  $\downarrow$  in ATP, lysosomes rupture,  $\downarrow$ Na<sup>+</sup> and K<sup>+</sup> pump, cell swelling, depressed cellular metabolism of nutrients.



Different types of "positive feedback" that can lead to progression of shock

