

Difference Between IJV and Carotid Pulses

- Superficial and lateral in the neck
- · Better seen than felt
- Has two peaks and two troughs
- Descents >obvious than crests
- Digital compression abolishes venous pulse
- Jugular venous pressure falls during inspiration
- Abdominal compression elevates jugular pressure
- Mean jugular venous pressure falls during standing

Deeper and medial in the neck

الملكسعود

- · Better felt than seen
- · Has single upstroke only
- Upstroke brisker and visible
- Digital compression has no effect
- Do not change with respiration
- Abdominal compression has no effect on carotid pulse
- Carotid pulse do not change when standing

JVP Measurement Two scale method is commonly used A horizontal scale at the top of the oscillating venous col

- A horizontal scale at the top of the oscillating venous column in IJV cuts the vertical scale at the sternal angle gives JV pressure in cm of water
- Normally JV pressure does not exceed 4 cm above the sternal angle
- Since RA is approximately 5 cm below the sternal angle , the jugular venous pressure (RA mean pressure) is corresponds to 9 cm
- By way of conversion, normal mean JV pressure does not exceed 7 mm Hg (9 cm column of water / 1.3 =6.9)
- Elevated JVP: JVP of >4 cm above sternal angle.

. الملكسعود

Etiology of Heart Failure (HF) Inappropriate work-load: (Volume or pressure) - Hypertension / ? Severe hypotension. - Pulmonary embolism (Cor-pulmonale). - Pregnancy, anemia, thyrotoxicosis, A-V fistula. - Valvular heart disease. Restricted filling: - Pericarditis. - Myocarditis. - Cardiomyopathy. Impaired myocardial function/ Damage/ Loss: - Myocardial ischemia (Coronary artery disease). - Myocardial infarction. - Myocardial death.

قعاد الملك بيعود King Saud University		
Neurohormonal Changes		
N/H changes	Favorable effect	Unfavorable effect
↑ Sympathetic adrenergic activity	↑ HR ,↑ contractility, vasoconstriction \rightarrow ↑ Venous return (VR), ↑ filling.	
↑ Circulating catecholamines	↑ HR ,↑ contractility, vasoconstriction \rightarrow ↑ Venous return (VR), ↑ filling.	$ \begin{array}{l} \text{Vasoconstriction constriction} \to \uparrow \\ \text{After load} \to \uparrow \text{ workload} \\ \to \uparrow \text{ O}_2 \text{ Consumption.} \\ \end{array} $
↑ Renin-Angiotensin – Aldosterone system activation	Salt & water retention→↑ VR & vasoconstriction.	Vasoconstriction → ↑ after load → ↑ BP.
↑ Vasopressin (ADH)	Water retention→↑ VR & vasoconstriction.	Vasoconstriction \rightarrow ↑ after load \rightarrow ↑ BP.
↑ interleukins &TNFα	May have roles in myocyte hypertrophy.	Apoptosis (programmed cell death.)
↑Endothelin	Vasoconstriction→↑ VR.	↑ After load → ↑ BP 29

Neuro-hormonal Compensatory Changes in Hearf Failure

- Increase in preload.
- Increase in sympathetic nervous activity (tone).
- Increase in circulating catecholamines.
- Increase in Renin-angiotensin-aldosterone.
- Increase in vasopressin.
- Increase in atrial natriuretic factor.

Main Compensatory Changes for Decreased Cardiac Output in Hearf Failure

- Increased sympathetic nervous system activity (tone) and catecholamines:
 - ↑ HR, ↑ contractility, & vasoconstriction to ↑ BP.
 - Frank-Starling mechanism:
 - \uparrow Venous return will \uparrow LVEDP = \uparrow SV.
- Activation of Renin-Angiotensinaldosterone System (RAAS) to ↑ BP.

Medications Used to Treat Heart Failure: Experts recommend: Diuretics ... (to reduce swelling) Digoxin ... (to increase heart contractility) ACE Inhibitors ... (in case of high blood pressure: to cause vasodilatation & ↓ blood pressure & block reninangiotensin aldosterone system.) Blockers ... (in case of high blood pressure: to ↓ heart rate & ↓ blood pressure.) Combination of medications has been proven to save lives & keep people out of hospital.

Cardiac Transplant

- Become more widely used since the advances in immunosuppressive treatment.
- Survival rate:
 - 1 year 80% 90%
 - 5 years 70%

61

Prognosis

- Annual mortality rate depends on patients symptoms & LV function.
 - 5% ... in patients w mild symptoms & mild ↓ in LV function.
 - 30% 50% ... in patient w advances LV dysfunction & severe symptoms.
 - 40% 50% of death ... due to sudden cardiac death (SCD.)

62

Can a Person Live with Heart Failure?

YES!

- See physician regularly.
- Limit salt & water intake.
- Weigh each day.
 - Contact physician if his weight changes > 2-3 pounds in one day.
- *Take medications.
- *Exercise at levels recommended by physician.

63

