Drug Therapy of Heart Failure Prof. Abdulrahman Almotrefi # Learning objectives By the end of this lecture, students should be able to: Describe the different classes of drugs used for treatment of acute & chronic heart failure and their mechanism of action Understand their pharmacological effects, clinical uses, adverse effects and their interactions with other drugs # **HEART FAILURE** Inability of the heart to maintain an adequate cardiac output to meet the metabolic demands of the body # CAUSES OF HEART FAILURE # Symptoms of Heart failure - Tachycardia - Decreased exercise tolerance (rapid fatigue) - Dyspnea (pulmonary congestion) - Peripheral edema - Cardiomegaly #### Pathophysiology of CHF **↓** Force of contraction Low C.O. **↓** Carotid sinus firing ↓ Renal blood flow. **Activate sympathetic system Activate renin-angiotensin-**↑ Sympathetic discharge Aldosterone system **ALDOS**1 Ag. 11 Remodeling Salt & Water Vasoconstriction Retention ↑ Force of **Volume expansion** ↑ HR Cardiac .cont **Arterial VC Venous VC** ↑ Preload ↑ Preload ↑ Afterload # Factors affecting cardiac output and heart failure 1- Preload 2- Afterload 3- Cardiac contractility #### Drugs used in treatment of heart failure #### I- Drugs that decrease preload: - 1 Diuretics - 2 Aldosterone antagonists - 3 Venodilators #### **II- Drugs that decrease afterload:** 1 - Arteriodilators ### Drugs used in treatment of heart failure # III- Drugs that decrease both preload & afterload: (Combined arteriolo- & venodilators) - 1- Angiotensin converting enzyme (ACE) inhibitors - 2- Angiotensin receptor antagonists - 3- α₁-adrenoceptor antagonists - 4- Direct vasodilators ### Drugs used in treatment of heart failure #### IV- Drugs that increase contractility: - 1- Cardiac glycosides (digitalis) - 2- β- adrenoceptor agonists 3- Phosphodiesterase inhibitors # I- Drugs that decrease preload 1-Diuretics: **Mechanism of action in heart failure:** reduce salt and water retention decrease ventricular preload and venous pressure reduction of cardiac size Improvement of cardiac performance # I- Drugs that decrease preload ### **1-Diuretics:** #### **Chlorothiazide** - first-line agent in heart failure therapy - used in volume overload (pulmonary and/ or peripheral edema) - used in mild congestive heart failure # I- Drugs that decrease preload 1-Diuretics: #### **Furosemide** - a potent diuretic - used for immediate reduction of pulmonary congestion & severe edema associated with : - acute heart failure - moderate & severe chronic failure # I- Drugs that decrease preload #### **2-Aldosterone antagonists:** # **Spironolactone** - nonselective antagonist of aldosterone receptor - a potassium sparing diuretic - improves survival in advanced heart failure # I- Drugs that decrease preload 2-Aldosterone antagonists: # **Eplerenone** - a new <u>selective</u> aldosterone receptor antagonist (does not inhibit other hormones such as estrogens & androgens) - indicated to improve survival of stable patients with congestive heart failure ### I- Drugs that decrease preload #### 3-Venodilators: # Nitroglycerine Isosorbide dinitrate - used I.V. for severe heart failure when the main symptom is dyspnea due to pulmonary congestion - dilates venous blood vessels and reduce preload # II- Drugs that decrease afterload #### 1- Arteriodilators: # **Hydralazine** used when the main symptom is rapid fatigue due to low cardiac output reduce peripheral vascular resistance #### 1-Angiotensin converting enzyme (ACE) inhibitors: - considered as first-line drugs for chronic heart failure along with diuretics - first-line drugs for hypertension therapy # Angiotensin converting enzyme inhibitors MECHANISM OF ACTION ### Pharmacological actions: - 1 Decrease peripheral resistance (Afterload) - 2 Decrease Venous return (Preload) - 3 Decrease sympathetic activity - 4- Inhibit cardiac and vascular remodeling associated with chronic heart failure Decrease in mortality rate #### **Pharmacokinetics:** # Captopril, Enalapril and Ramipril - rapidly absorbed from GIT after oral administration. - food reduce their bioavailability ### **Enalapril**, Ramipril - prodrugs, converted to their active metabolites in liver - have long half-life & given once daily ### **Adverse effects:** - 1- acute renal failure, especially in patients with renal artery stenosis - 2- hyperkalemia, especially in patients with renal insufficiency or diabetes - 3- severe hypotension in hypovolemic patients (due to diuretics, salt restriction or gastrointestinal fluid loss) ### **Adverse effects:** - 4- dry cough sometimes with wheezing - 5- angioneurotic edema (swelling in the nose, throat, tongue, larynx) - 6- dysgeusia (reversible loss or altered taste) # **Contraindications:** during the second and third trimesters of pregnancy (due to the risk of : fetal hypotension renal failure & malformations) - renal artery stenosis 2- Angiotensin receptor blockers (ARBs): Losartan, Valsartan, Irbesartan #### **Mechanism of action:** - block AT₁ receptors - decrease action of angiotensin II #### 3- α-ADRENOCEPTOR BLOCKERS: #### **Prazosin** - blocks α- receptors in arterioles and venules - decrease both afterload & preload ### 4- Direct acting vasodilators: # Sodium nitroprusside - given I.V. for acute or severe heart failure - acts immediately and effects lasts for 1-5 min. # IV- Drugs that increase contractility 1- Cardiac glycosides (digitalis): # **Digoxin** -increases the force of myocardial contraction (+ve inotropic effect) #### **Mechanism of action:** Inhibit Na+ / K+ ATPase enzyme (the sodium pump) #### **MECHANISM OF ACTION OF DIGOXIN** 1- Cardiac glycosides (digitalis): **Digoxin** #### **Therapeutic uses:** - Congestive heart failure - has narrow therapeutic index # 1- Cardiac glycosides (digitalis) : Digoxin **Adverse effects (Cardiac):** - digitalis-induced arrhythmias - extrasystoles - coupled beats (Bigeminal rhythm) - ventricular tachycardia or fibrillation - cardiac arrest 1- Cardiac glycosides (digitalis): **Digoxin** Adverse effects (non-cardiac): #### **GIT**: anorexia, nausea, vomiting, diarrhea #### CNS: headache, visual disturbances, drowsiness 1- Cardiac glycosides (digitalis): # **Digoxin** **Factors that increase its toxicity:** - Renal diseases - Hypokalemia - Hypomagnesemia - Hypercalemia ### 2- β-Adrenoceptor agonists: #### **Dobutamine** - Selective β₁ agonist - Uses: Treatment of acute heart failure in cardiogenic shock # IV- Drugs that increase contractility 3- phosphodiesterase -III inhibitors: Milrinone ### **Mechanism of action:** Inhibits phosphodiesterase -III (cardiac & B. Vessels) Increase cardiac Contractility dilatation of arteries & veins (reduction of preload & afterload) # IV- Drugs that increase contractility 3- phosphodiesterase -III inhibitors: Milrinone ## **Therapeutic uses:** - used only intravenously for management of acute heart failure - not safe or effective in the longer (> 48 hours) treatment of patients with heart failure # IV- Drugs that increase contractility 3- phosphodiesterase -III inhibitors: Milrinone ### **Adverse effects:** - Hypotension and chest pain (angina?) #### **Chemical interaction:** - furosemide should not be administered in I.V. lines containing milrinone due to formation of a precipitate - Enoximone & Vesnarinone new drugs in clinical trials # The use of β-adrenoceptor blockers in heart failure The elevated adrenergic activity in chronic heart failure patients cause structural remodeling of the heart (cardiac dilatation & hypertrophy) #### **β-blockers:** - reduce the progression of <u>chronic</u> heart failure - not used in acute heart failure # The use of β-adrenoceptor blockers in heart failure #### Mechanism of action of β-blockers in HF: - 1- attenuate cardiac remodeling - 2- slow heart rate, which allows the left ventricle to fill more completely - 3- decrease renin release reduce mortality & morbidity of patients with HF # The use of β-adrenoceptor blockers in heart failure - Second generation: ``` cardioselective (β₁-receptors) ``` e.g. Bisoprolol, Metoprolol - Third generation: have vasodilator actions (α-blocking effect) e.g. Carvedilol, Nebivolol ### New drugs for heart failure 1- Natriuretic Peptides: #### **Nesiritide** - BNP* is secreted by the ventricules in response to stretch - elevated BNP is associated with advanced heart failure (compensatory mechanism in HF) * Brain Natriuretic Peptide ### **Natriuretic Peptides** #### **Nesiritide** - a purified preparation of human BNP, manufactured by recombinant DNA technology - † cyclic-GMP in vascular smooth muscle, leading to smooth muscle relaxation & reduction of preload and afterload - indicated for the treatment of patients with acute decompensated heart failure (ADHF) who have dyspnea at rest or with minimal activity ## New drugs for heart failure #### 2- Calcium sensitisers: #### Levosimendan used in the management of acutely decompensated heart failure (ADHF) # New drugs for heart failure Levosimendan #### mechanism of action: - Calcium sensitization (improves cardiac contractility without increasing oxygen consumption) potassium-ATP channel opening (causes vasodilation, improving blood flow to vital organs) These effects reduce the risk of worsening ADHF or death compared with dobutamine ## Management of chronic heart failure - Reduce work load of the heart - Limit patient activity - Reduce weight - Control hypertension - Restrict sodium - Stop smoking ### **Heart Failure Functional Classification** | NYHA
Class | Symptoms | | |---------------|---|--| | ı | Cardiac disease, but no symptoms and no limitation in ordinary physical activity, e.g. no shortness of breath when walking, climbing stairs etc. | | | II | Mild symptoms (mild shortness of breath and/or angina), slight limitation during ordinary activity. | | | III | Marked limitation in activity due to symptoms, even during less-than-ordinary activity, e.g. walking short distances (20–100 m).Comfortable only at rest. | | | IV | Severe limitations. Experiences symptoms even while at rest. Mostly bedbound patients. | | # Management of chronic heart failure | | For Survival/Morbidity | For Symptoms | |------------|--|---| | NYHA I | Continue ACE inhibitor/ARB if ACE inhibitor intolerant, continue aldosterone antagonist if post-MI add beta-blocker if post-MI | reduce / stop diuretic | | NYHA II | ACE inhibitor as first-line treatment/ARB if ACE inhibitor intolerant add beta-blocker and aldosterone antagonist if post MI | +/- diuretic depending on fluid retention | | NYHA III | ACE inhibitor plus ARB or ARB alone if ACE intolerant beta- blocker add aldosterone antagonist | + diuretics + digitalis If still symptomatic | | NYHA
IV | Continue ACE inhibitor/ARB beta-blocker Aldosterone antagonist | +diuretics + digitalis
+ consider temporary
inotropic support | ### **Congestive Heart Failure in Black patients** # Hydralazine/isosorbide dinitrate fixed dose combination FDA approved to add to standard therapy for black Americans with congestive heart failure (due to poor response to ACE inhibitors) should be considered for patients intolerant to ACE inhibitors & ARBs due to renal dysfunction # Acute decompensated heart failure (ADHF) - a sudden worsening of the signs and symptoms of heart failure, which typically includes: - difficulty breathing (dyspnea) - leg or feet swelling - fatigue - ADHF is a common and potentially serious cause of acute respiratory distress. # Management of Acute decompensated heart failure (ADHF)