

CAPILLARY CIRCULATION

Prof. Sultan Ayoub Meo
MBBS, Ph.D (Pak), M Med Ed (Dundee), FRCP (London),
FRCP (Dublin), FRCP (Glasgow), FRCP (Edinburgh)
Professor and Consultant, Department of Physiology,
College of Medicine, King Saud University, Riyadh, KSA

LECTURE OBJECTIVES

- Components of the microcirculation
- Types of blood capillaries
- Regulation of flow in the capillary beds.
- Diffusion and filtration.
- Define edema, state its causes and discuss its mechanisms.

CAPILLARY

CAPILLARY

CAPILLARY

DISTRIBUTION OF BLOOD IN THE DIFFERENT PARTS OF CIRCULATORY SYSTEM

Figure 14-1. Distribution of blood (in percentage of total blood) in the different parts of the circulatory system.

Figure 16-1. Components of the microcirculation.

Lymphatic capillaries are thin-walled small, micro-vessels located in the spaces between cells except CNS Serve to drain and process ECF. capillary Lymphatic carries lymph into lymphatic vessels, connects to a lymph node to the venous circulation Lymphatic capillaries are slightly larger in diameter than blood capillaries, allow interstitial fluid to flow

FUNCTIONS OF CAPILLARIES

- They form a selectively permeable barrier between the circulatory system and the tissues supplied.
- Play a metabolic role Produce PgI2, growth factors for blood cells, fibroblast GF, platelet GF, and in the lungs; angiotensin converting enzyme
- Inactivation of intercellular messengers
- Antithrombotic function

Aorta: Elastic recoil

Arteries: Muscular, low resistance vessels

Arterioles: High resistance vessels

Capillaries: Exchange vessels

Veins and Venules: Capacitance vessels

Smallest blood vessels

Exchange vessels: Provide direct access tocells.

Most permeable: Permits exchange of nutrients & wastes.

CAPILLARY BED

Capillary bed consist of two types of vessels:

Vascular shunt: Directly connects an arteriole to a venule

True capillaries: Exchange vessels.

Oxygen & nutrients cross to cells

Carbon dioxide & metabolic waste

products cross into blood

TYPES OF CAPILLARIES

Types based on diameter and or permeability:

Continuous Capillaries

Do not have fenestrae. Muscle, lung, and adipose tissue.

Fenestrated Capillaries

Found in kidney glomeruli, small intestine, and endocrine glands.

Have pores, allow large substances to pass but not plasma proteins.

Sinusoidal Capillaries

Large diameter with fenestrae. Liver, spleen, bone marrow, lymphoid tissue, some endocrine glands.

- Rate of blood flow through each tissue capillary bed
- Capillary pressure within the capillaries
- Rate of transfer of substances between the blood of the capillaries and the surrounding interstitial fluid.

TYPES OF CAPILLARIES

FORCES AT THE ARTERIAL END OF THE CAPILLARY

Net filtration pressure at the arterial end of the capillary: 13 mmHg. Move fluid outward through the capillary pores.

13 mmHg filtration pressure causes on average about 1/200 of the plasma in the flowing blood to filter out of the arterial ends of the capillaries into the interstitial spaces

Forces Tending to Move Fluid Outward	
Capillary pressure (arterial end of capillary)	30
Negative interstitial free fluid pressure	3
Interstitial fluid colloid osmotic pressure	8
TOTAL OUTWARD FORCE	41
Forces Tending to Move Fluid Inward Plasma colloid osmotic pressure TOTAL INWARD FORCE	<u>28</u> 28
	28
Summation of Forces	
Outward	41
Inward	<u>28</u>
NET OUTWARD FORCE (AT ARTERIAL END)	13

FORCES AT THE ARTERIAL END OF THE CAPILLARY

CLINICAL SIGNIFICANCE OF CAPILLARY FILTRATION

- **Blood loss:** Vasoconstriction of arterioles \rightarrow decrease capillary hydrostatic pressure. Osmotic pressure of plasma proteins favours absorption of interstitial fluid $\rightarrow \uparrow$ blood volume.
- □ Congestive heart failure: Venous pressure rises \rightarrow build-up of blood in capillaries \rightarrow capillary hydrostatic pressure \rightarrow filtration \rightarrow oedema.
- **Hypoproteinemia** (Starvation, liver disease) $\rightarrow \downarrow$ plasma protein colloid osmotic pressure \rightarrow loss of fluid from capillaries \rightarrow oedema.
- □ Inflammation: The gaps between the endothelial cells increase because of the inflammatory mediators $\rightarrow \uparrow$ movement of proteins into the interstitium \rightarrow oedema.

DIAMETER AND BLOOD FLOW

As diameter of vessels ↓, the total cross-sectional area

↑ & velocity of blood flow ↓

DIAMETER AND BLOOD FLOW

As diameter of vessels ↓, the total cross-sectional area

↑ & velocity of blood flow ↓

#