



# OUTLINE

- 1. Review of the conduction system
- 2. ECG waveforms and intervals
- **3.** ECG leads
- 4. Determining heart rate
- 5. Determining heart axis
- 6. Determining heart rhythm

# THE NORMAL CONDUCTION SYSTEM



## WHAT IS AN ECG?

The electrocardiogram (ECG) is a representation of the sum of all the electrical events of the cardiac cycle.

Each event has a distinctive waveform, the study of which can lead to greater insight into a patient's cardiac pathophysiology.

# WHAT TYPES OF INFORMATION CAN WE OBTAIN FROM AN ECG?

- Heart rate
- Heart Rhythem
- Myopathies
- Electrolyte disturbances (i.e. hyperkalemia, hypokalemia)
- Drug toxicity (i.e. digoxin and drugs which prolong the QT interval)

#### WAVEFORMS AND INTERVALS



# WAVEFORMS, INTERVALS AND SEGMENTS



# WAVEFORMS, INTERVALS AND SEGMENTS Cont...



#### WAVEFORMS, INTERVALS AND SEGMENTS Interval is a part of the ECG and a segment is a part of an interval.

| PR Interval:  | From the start of the P wave to the start of the QRS complex 0.12 - 0.20 sec                   |
|---------------|------------------------------------------------------------------------------------------------|
| PR Segment:   | From the end of the P wave to the start of the QRS complex                                     |
| I Doint.      | The junction between the QRS                                                                   |
| 5101110.      | complex and the ST segment                                                                     |
| QT Interval:  | From the start of the QRS complex to<br>the end of the T wave<br>$\leq 0.40 \sec (0.4 - 0.44)$ |
| QRS Interval: | From the start to the end of the QRS complex 0.06 - 0.10 sec                                   |
| ST Segment:   | From the end of the QRS complex (J point) to the start of the T wave                           |



- Leads are electrodes which measure the difference in electrical potential between either:
- 1. Two different points on the body (bipolar leads)
- 2. One point on the body and a virtual reference point with zero electrical potential, located in the center of the heart (unipolar leads)

## ECG LEADS

The standard ECG has 12 leads:3 Standard Limb Leads3 Augmented Limb Leads6 Precordial (chest) Leads

The axis of a particular lead represents the viewpoint from which it looks at the heart.

# STANDARD LIMB LEADS



# PRECORDIAL LEADS



# SUMMARY OF LEADS

|                       | Limb Leads                              | Precordial Leads               |
|-----------------------|-----------------------------------------|--------------------------------|
| Bipolar               | I, II, III<br>(standard limb leads)     |                                |
| Unipolar (V<br>leads) | aVR, aVL, aVF<br>(augmented limb leads) | V <sub>1</sub> -V <sub>6</sub> |

# CALIBRATION OF ECG PAPER



#### DETERMINING THE HEART RATE WITH A REGULAR RHYTHEM.

Take the number of "smallest boxes moved by the machine per minute" i.e. (1500), and divide by the number of boxes between two adjacent "R"-"R" waves.

#### H.R. = 1500 / # of squares b/w 2 "R - R" waves

# **RULE OF 1500**

Take the number of "smallest boxes moved by the machine per minute" i.e. (1500), and divide by the number of boxes between adjacent "R"-"R" waves.

#### H.R. = 1500 / # of squares b/w 2 "R - R" waves

#### DETERMINING THE HEART RATE WITH A IRREGULAR RHYTHEM.

- In this case, heart rate can be calculated by first, counting the number of QRS complexes in 30 large squares (which equals the number of QRS complexes in 6 seconds)
- Then multiply the number of QRS complexes counted in 6 seconds by 10 to get the number of QRS complexes in one minute i.e. the heart rate



Number of QRS complexes in 6 sec i.e. (30 large squares) = 7Number of QRS complexes in 1 min = 7 x 10 = 70 b/min

## WHAT IS THE HEART RATE?



(1500 / 30) = 50 bpm

## WHAT IS THE HEART RATE?



 $(1500 / \sim 18) = \sim 83 \text{ bpm}$ 

### WHAT IS THE HEART RATE?



#### (1500 / 8) = 187 bpm

## THE RULE OF 1500

It may be easiest to memorize the following table:

| # of big boxes | Rate |
|----------------|------|
| 1              | 300  |
| 2              | 150  |
| 3              | 100  |
| 4              | 75   |
| 5              | 60   |

#### THE RULE OF 1500





The Rhythem is defined as the time interrelationship between 2 (adjacent) "R" waves.

The rhythm of the heart can be regular or irregular.

## CARDIAC AXIS

#### CALCULATION OF THE CARDIAC AXIS

The electrical axis is the average direction of the current flow in the heart during a cardiac cycle. The cardiac axis is expressed as an angle and is measured in degrees. The depolarization wave normally spreads through the ventricles in a direction from base of the heart to its apex.

The normal cardiac axis lies between -30° to 90°, Fig-22. Certain pathological conditions causes the cardiac axis to deviate to the left (between -30° to -90°) which is then called *left axis deviation* (LAD) while other pathological conditions causes it to shift to the right (90° to 180°) and it is called *right axis deviation* (RAD). Beyond these values, it will be extreme or right /left axis deviation

# **CARDIAC AXIS**





- There commonly used methods to determine the Cardiac Axis. 1. Rule of the thumb.
- 2. Triaxial Method,

#### **<u>1. RULE OF THE THUMB.</u>**

- Using this methods, Leads I and III are used. (but I and AVf can also be used )
  - Both +ve (Normal axis)
  - I +ve and III –ve (Left axis deviation)
  - I -ve and III +ve (Right axis deviation)

#### CALCULATING THE CARDIAC AXIS AN EXAMPLE



**1.** Calculate the sum potential in each lead:

- Lead I = 5 4 = 1 (+ve).
- Lead III = 12 1 = 11 (+ve).

#### **Normal Axis**





#### Left Axis





#### **Right Axis**





## CARDIAC AXIS CONT..

## **2. TRIAXIAL METHOD.**

Use two limb leads, namely leads I and III. Looking at the QRS complexes in these leads, calculate the overall size and polarity of the QRS complex in each by subtracting the depth of S wave from the height of the R wave. Construct a vector diagram and draw arrows that represent the sum of size and polarity for each lead on the diagram.

- The cardiac axis lies between the two arrows. Drop a perpendicular line from the tip of each arrow. The point at which the two perpendicular lines meet, constitute the tip of the cardiac axis. Draw a line from that point to zero point and this will be the cardiac axis, Fig-23.
- N.B. the height of the R wave and the depth of the S wave are both measured starting from the isoelectric line.

### CARDIAC AXIS CONT..



THANK YOU