ECG

OUTLINE

1. Review of the conduction system
2. ECG waveforms and intervals
3. ECG leads
4. Determining heart rate
5. Determining heart axis
6. Determining heart rhythm

THE NORMAL CONDUCTION SYSTEM

WHAT IS AN ECG?

The electrocardiogram (ECG) is a representation of the sum of all the electrical events of the cardiac cycle.

Each event has a distinctive waveform, the study of which can lead to greater insight into a patient's cardiac pathophysiology.

WHAT TYPES OF INFORMATION CAN WE OBTAIN FROM AN ECG?

- Heart rate
- Heart Rhythem
- Myopathies
- Electrolyte disturbances (i.e. hyperkalemia, hypokalemia)
- Drug toxicity (i.e. digoxin and drugs which prolong the QT interval)

WAVEFORMS AND INTERVALS

VERTICAL	1 Small Square $=1 \mathrm{~mm}(0.1 \mathrm{mV})$ I Large Square $=5 \mathrm{~mm}(0.5 \mathrm{mV})$ AXIS
2 Large Squares $=1 \mathrm{mV}$	

HORIZONTAL	1 Small Square $=.04 \sec (40 \mathrm{~m} \mathrm{sec})$
AXIS	I Large Square $=.2 \sec (200 \mathrm{~m} \mathrm{sec})$
	5 Large Squares $=1 \sec (1000 \mathrm{~m} \mathrm{sec})$

WAVEFORMS, INTERVALS AND SEGMENTS

WAVEFORMS, INTERVALS AND SEGMENTS cont...

WAVEFORMS, INTERVALS AND SEGMENTS

PR Interval:

PR Segment:

From the start of the P wave to the start of the QRS complex $0.12-0.20 \mathrm{sec}$

From the end of the P wave to the start of the QRS complex

The junction between the QRS complex and the ST segment

From the start of the QRS complex to the end of the T wave $\leq 0.40 \mathrm{sec}(0.4-0.44)$

From the start to the end of the QRS complex 0.06-0.10 sec

From the end of the QRS complex (J point) to the start of the T wave

ECG LEADS

Leads are electrodes which measure the difference in electrical potential between either:

1. Two different points on the body (bipolar leads)
2. One point on the body and a virtual reference point with zero electrical potential, located in the center of the heart (unipolar leads)

ECG LEADS

The standard ECG has 12 leads: 3 Standard Limb Leads
3 Augmented Limb Leads
6 Precordial (chest) Leads

The axis of a particular lead represents the viewpoint from which it looks at the heart.

STANDARD LIMB LEADS

PRECORDIAL LEADS

SUMMARY OF LEADS

	Limb Leads	Precordial Leads
Bipolar	I, II, III	
(standard limb leads)	-	
Unipolar (V leads)	aVR, aVL, aVF (augmented limb leads)	$\mathrm{V}_{1}-\mathrm{V}_{6}$

CALIBRATION OF ECG PAPER

-

 $-1-2-2-2$
 Q $-1-1-1+1-1$ Q- $-2+\square=\square$ - $-4+5$
 H- + - $-\infty$ H- -4 P-
 H- $-\infty-\infty$ - $-\infty-\infty$ H- - 梱

 \#
 \rightarrow - \quad -

DETERMINING THE HEART RATE WITH A REGULAR RHYTHEM.

Take the number of "smallest boxes moved by the machine per minute" i.e. (1500), and divide by the number of boxes between two adjacent "R"-"R" waves.

$$
\text { H.R. = } 1500 \text { / \# of squares b/w } 2 \text { " } R \text { - } R \text { " waves }
$$

RULE OF 1500

Take the number of "smallest boxes moved by the machine per minute" i.e. (1500), and divide by the number of boxes between adjacent "R"-"R" waves.

$$
\text { H.R. = } 1500 \text { / \# of squares } b / w 2^{6} R \text { - R" waves }
$$

DETERMINING THE HEART RATE WITH A IRREGULAR RHYTHEM.

In this case, heart rate can be calculated by first, counting the number of QRS complexes in 30 large squares (which equals the number of QRS complexes in 6 seconds)

Then multiply the number of QRS complexes counted in 6 seconds by 10 to get the number of QRS complexes in one minute i.e. the heart rate

11	1	2	3	4	5	6	7

Number of QRS complexes in 6 sec i.e. (30 large squares) $=7$ Number of QRS complexes in $1 \mathrm{~min}=7 \times 10=70 \mathrm{~b} / \mathrm{min}$

WHAT IS THE HEART RATE?

$$
(1500 / 30)=50 \mathrm{bpm}
$$

WHAT IS THE HEART RATE?

$(1500 / \sim 18)=\sim 83 \mathrm{bpm}$

WHAT IS THE HEART RATE?

$$
(1500 / 8)=187 \mathrm{bpm}
$$

THE RULE OF 1500

It may be easiest to memorize the following table:

\# of big boxes	Rate
1	300
2	150
3	100
4	75
5	60

THE RULE OF 1500

RHYTHM

The Rhythem is defined as the time interrelationship between 2 (adjacent) "R" waves.

The rhythm of the heart can be regular or irregular.

CALCULATION OF THE CARDIAC AXIS

The electrical axis is the average direction of the current flow in the heart during a cardiac cycle. The cardiac axis is expressed as an angle and is measured in degrees. The depolarization wave normally spreads through the ventricles in a direction from base of the heart to its apex.

The normal cardiac axis lies between -30° to 90°, Fig-22. Certain pathological conditions causes the cardiac axis to deviate to the left (between -30° to -90°) which is then called left axis deviation (LAD) while other pathological conditions causes it to shift to the right $\left(90^{\circ}\right.$ to 180°) and it is called right axis deviation (RAD). Beyond these values, it will be extreme or right /left axis deviation

CARDIAC AXIS

There commonly used methods to determine the Cardiac Axis. 1. Rule of the thumb.
2. Triaxial Method,

1. RULE OF THE THUMB.

Using this methods, Leads I and III are used.
(but I and AVf can also be used)

- Both + ve (Normal axis)
- I +ve and III -ve (Left axis deviation)
- I -ve and III +ve (Right axis deviation)

CALCULATING THE CARDIAC AXIS AN EXAMPLE

1. Calculate the sum potential in each lead:

- Lead $\mathrm{I}=5-4=1(+\mathrm{ve})$.

。

$$
\text { Lead III = } 12-1=11(+\mathrm{ve}) \text {. }
$$

Normal Axis

Left Axis

Right Axis

2. TRIAXIAL MIETHOD.

Use two limb leads, namely leads I and III. Looking at the QRS complexes in these leads, calculate the overall size and polarity of the QRS complex in each by subtracting the depth of S wave from the height of the R wave. Construct a vector diagram and draw arrows that represent the sum of size and polarity for each lead on the diagram.

- The cardiac axis lies between the two arrows. Drop a perpendicular line from the tip of each arrow. The point at which the two perpendicular lines meet, constitute the tip of the cardiac axis. Draw a line from that point to zero point and this will be the cardiac axis, Fig-23.
- N.B. the height of the R wave and the depth of the S wave are both measured starting from the isoelectric line.

CARDIAC AXIS солт.

Step 1
Look at leads I \& III

Step 2
Calculate the average size
and polarity of QRS
complex in each

Step 3
Plot on the hexaxial reference system

THANK YOU

